Search preferences
Passer aux résultats principaux de la recherche

Filtres de recherche

Type d'article

  • Tous les types de produits 
  • Livres (16)
  • Magazines & Périodiques (Aucun autre résultat ne correspond à ces critères)
  • Bandes dessinées (Aucun autre résultat ne correspond à ces critères)
  • Partitions de musique (Aucun autre résultat ne correspond à ces critères)
  • Art, Affiches et Gravures (Aucun autre résultat ne correspond à ces critères)
  • Photographies (Aucun autre résultat ne correspond à ces critères)
  • Cartes (Aucun autre résultat ne correspond à ces critères)
  • Manuscrits & Papiers anciens (Aucun autre résultat ne correspond à ces critères)

Etat En savoir plus

  • Neuf (15)
  • Comme neuf, Très bon ou Bon (Aucun autre résultat ne correspond à ces critères)
  • Assez bon ou satisfaisant (1)
  • Moyen ou mauvais (Aucun autre résultat ne correspond à ces critères)
  • Conformément à la description (Aucun autre résultat ne correspond à ces critères)

Reliure

Particularités

  • Ed. originale (Aucun autre résultat ne correspond à ces critères)
  • Signé (Aucun autre résultat ne correspond à ces critères)
  • Jaquette (Aucun autre résultat ne correspond à ces critères)
  • Avec images (10)
  • Sans impressions à la demande (9)

Langue (1)

Prix

Fourchette de prix personnalisée (EUR)

Pays

  • Campesato, Oswald

    Edité par Mercury Learning and Information, 2024

    ISBN 10 : 1501523562 ISBN 13 : 9781501523564

    Langue: anglais

    Vendeur : Books From California, Simi Valley, CA, Etats-Unis

    Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

    Contacter le vendeur

    EUR 40,75

    EUR 4,31 expédition vers Etats-Unis

    Quantité disponible : 1 disponible(s)

    Ajouter au panier

    paperback. Etat : Very Good.

  • Campesato, Oswald

    Edité par Mercury Learning and Information, 2025

    ISBN 10 : 1501523562 ISBN 13 : 9781501523564

    Langue: anglais

    Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

    Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

    Contacter le vendeur

    EUR 49,79

    EUR 13,60 expédition depuis Royaume-Uni vers Etats-Unis

    Quantité disponible : Plus de 20 disponibles

    Ajouter au panier

    Etat : New. In.

  • Campesato, Oswald

    Edité par Mercury Learning and Information 1/1/2025, 2025

    ISBN 10 : 1501523562 ISBN 13 : 9781501523564

    Langue: anglais

    Vendeur : BargainBookStores, Grand Rapids, MI, Etats-Unis

    Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

    Contacter le vendeur

    EUR 65,15

    Gratuit expédition vers Etats-Unis

    Quantité disponible : 5 disponible(s)

    Ajouter au panier

    Paperback or Softback. Etat : New. Large Language Models for Developers: A Prompt-Based Exploration of Llms. Book.

  • Oswald Campesato

    Edité par De Gruyter, US, 2025

    ISBN 10 : 1501523562 ISBN 13 : 9781501523564

    Langue: anglais

    Vendeur : Rarewaves USA, OSWEGO, IL, Etats-Unis

    Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

    Contacter le vendeur

    EUR 65,24

    Gratuit expédition vers Etats-Unis

    Quantité disponible : Plus de 20 disponibles

    Ajouter au panier

    Paperback. Etat : New. This book offers a thorough exploration of Large Language Models (LLMs), guiding developers through the evolving landscape of generative AI and equipping them with the skills to utilize LLMs in practical applications. Designed for developers with a foundational understanding of machine learning, this book covers essential topics such as prompt engineering techniques, fine-tuning methods, attention mechanisms, and quantization strategies to optimize and deploy LLMs. Beginning with an introduction to generative AI, the book explains distinctions between conversational AI and generative models like GPT-4 and BERT, laying the groundwork for prompt engineering (Chapters 2 and 3). Some of the LLMs that are used for generating completions to prompts include Llama-3.1 405B, Llama 3, GPT-4o, Claude 3, Google Gemini, and Meta AI. Readers learn the art of creating effective prompts, covering advanced methods like Chain of Thought (CoT) and Tree of Thought prompts. As the book progresses, it details fine-tuning techniques (Chapters 5 and 6), demonstrating how to customize LLMs for specific tasks through methods like LoRA and QLoRA, and includes Python code samples for hands-on learning. Readers are also introduced to the transformer architecture's attention mechanism (Chapter 8), with step-by-step guidance on implementing self-attention layers. For developers aiming to optimize LLM performance, the book concludes with quantization techniques (Chapters 9 and 10), exploring strategies like dynamic quantization and probabilistic quantization, which help reduce model size without sacrificing performance.FEATURES. Covers the full lifecycle of working with LLMs, from model selection to deployment. Includes code samples using practical Python code for implementing prompt engineering, fine-tuning, and quantization. Teaches readers to enhance model efficiency with advanced optimization techniques. Includes companion files with code and images -- available from the publisher.

  • Oswald Campesato

    Edité par De Gruyter, US, 2025

    ISBN 10 : 1501523562 ISBN 13 : 9781501523564

    Langue: anglais

    Vendeur : Rarewaves.com USA, London, LONDO, Royaume-Uni

    Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

    Contacter le vendeur

    EUR 92,26

    Gratuit expédition depuis Royaume-Uni vers Etats-Unis

    Quantité disponible : Plus de 20 disponibles

    Ajouter au panier

    Paperback. Etat : New. This book offers a thorough exploration of Large Language Models (LLMs), guiding developers through the evolving landscape of generative AI and equipping them with the skills to utilize LLMs in practical applications. Designed for developers with a foundational understanding of machine learning, this book covers essential topics such as prompt engineering techniques, fine-tuning methods, attention mechanisms, and quantization strategies to optimize and deploy LLMs. Beginning with an introduction to generative AI, the book explains distinctions between conversational AI and generative models like GPT-4 and BERT, laying the groundwork for prompt engineering (Chapters 2 and 3). Some of the LLMs that are used for generating completions to prompts include Llama-3.1 405B, Llama 3, GPT-4o, Claude 3, Google Gemini, and Meta AI. Readers learn the art of creating effective prompts, covering advanced methods like Chain of Thought (CoT) and Tree of Thought prompts. As the book progresses, it details fine-tuning techniques (Chapters 5 and 6), demonstrating how to customize LLMs for specific tasks through methods like LoRA and QLoRA, and includes Python code samples for hands-on learning. Readers are also introduced to the transformer architecture's attention mechanism (Chapter 8), with step-by-step guidance on implementing self-attention layers. For developers aiming to optimize LLM performance, the book concludes with quantization techniques (Chapters 9 and 10), exploring strategies like dynamic quantization and probabilistic quantization, which help reduce model size without sacrificing performance.FEATURES. Covers the full lifecycle of working with LLMs, from model selection to deployment. Includes code samples using practical Python code for implementing prompt engineering, fine-tuning, and quantization. Teaches readers to enhance model efficiency with advanced optimization techniques. Includes companion files with code and images -- available from the publisher.

  • Campesato, Oswald

    Edité par Mercury Learning & Information, 2025

    ISBN 10 : 1501523562 ISBN 13 : 9781501523564

    Langue: anglais

    Vendeur : Revaluation Books, Exeter, Royaume-Uni

    Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

    Contacter le vendeur

    EUR 77,66

    EUR 17,03 expédition depuis Royaume-Uni vers Etats-Unis

    Quantité disponible : 2 disponible(s)

    Ajouter au panier

    Paperback. Etat : Brand New. 1012 pages. 6.00x1.90x9.00 inches. In Stock.

  • Oswald Campesato

    Edité par De Gruyter, US, 2025

    ISBN 10 : 1501523562 ISBN 13 : 9781501523564

    Langue: anglais

    Vendeur : Rarewaves USA United, OSWEGO, IL, Etats-Unis

    Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

    Contacter le vendeur

    EUR 67,16

    EUR 43,17 expédition vers Etats-Unis

    Quantité disponible : Plus de 20 disponibles

    Ajouter au panier

    Paperback. Etat : New. This book offers a thorough exploration of Large Language Models (LLMs), guiding developers through the evolving landscape of generative AI and equipping them with the skills to utilize LLMs in practical applications. Designed for developers with a foundational understanding of machine learning, this book covers essential topics such as prompt engineering techniques, fine-tuning methods, attention mechanisms, and quantization strategies to optimize and deploy LLMs. Beginning with an introduction to generative AI, the book explains distinctions between conversational AI and generative models like GPT-4 and BERT, laying the groundwork for prompt engineering (Chapters 2 and 3). Some of the LLMs that are used for generating completions to prompts include Llama-3.1 405B, Llama 3, GPT-4o, Claude 3, Google Gemini, and Meta AI. Readers learn the art of creating effective prompts, covering advanced methods like Chain of Thought (CoT) and Tree of Thought prompts. As the book progresses, it details fine-tuning techniques (Chapters 5 and 6), demonstrating how to customize LLMs for specific tasks through methods like LoRA and QLoRA, and includes Python code samples for hands-on learning. Readers are also introduced to the transformer architecture's attention mechanism (Chapter 8), with step-by-step guidance on implementing self-attention layers. For developers aiming to optimize LLM performance, the book concludes with quantization techniques (Chapters 9 and 10), exploring strategies like dynamic quantization and probabilistic quantization, which help reduce model size without sacrificing performance.FEATURES. Covers the full lifecycle of working with LLMs, from model selection to deployment. Includes code samples using practical Python code for implementing prompt engineering, fine-tuning, and quantization. Teaches readers to enhance model efficiency with advanced optimization techniques. Includes companion files with code and images -- available from the publisher.

  • Image du vendeur pour Large Language Models for Developers | A Prompt-based Exploration of LLMs mis en vente par preigu

    Oswald Campesato

    Edité par De Gruyter, 2025

    ISBN 10 : 1501523562 ISBN 13 : 9781501523564

    Langue: anglais

    Vendeur : preigu, Osnabrück, Allemagne

    Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

    Contacter le vendeur

    EUR 53,65

    EUR 70 expédition depuis Allemagne vers Etats-Unis

    Quantité disponible : 5 disponible(s)

    Ajouter au panier

    Taschenbuch. Etat : Neu. Large Language Models for Developers | A Prompt-based Exploration of LLMs | Oswald Campesato | Taschenbuch | 1012 S. | Englisch | 2025 | De Gruyter | EAN 9781501523564 | Verantwortliche Person für die EU: Walter de Gruyter GmbH, De Gruyter GmbH, Genthiner Str. 13, 10785 Berlin, productsafety[at]degruyterbrill[dot]com | Anbieter: preigu.

  • Oswald Campesato

    Edité par De Gruyter, US, 2025

    ISBN 10 : 1501523562 ISBN 13 : 9781501523564

    Langue: anglais

    Vendeur : Rarewaves.com UK, London, Royaume-Uni

    Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

    Contacter le vendeur

    EUR 83,52

    EUR 73,79 expédition depuis Royaume-Uni vers Etats-Unis

    Quantité disponible : Plus de 20 disponibles

    Ajouter au panier

    Paperback. Etat : New. This book offers a thorough exploration of Large Language Models (LLMs), guiding developers through the evolving landscape of generative AI and equipping them with the skills to utilize LLMs in practical applications. Designed for developers with a foundational understanding of machine learning, this book covers essential topics such as prompt engineering techniques, fine-tuning methods, attention mechanisms, and quantization strategies to optimize and deploy LLMs. Beginning with an introduction to generative AI, the book explains distinctions between conversational AI and generative models like GPT-4 and BERT, laying the groundwork for prompt engineering (Chapters 2 and 3). Some of the LLMs that are used for generating completions to prompts include Llama-3.1 405B, Llama 3, GPT-4o, Claude 3, Google Gemini, and Meta AI. Readers learn the art of creating effective prompts, covering advanced methods like Chain of Thought (CoT) and Tree of Thought prompts. As the book progresses, it details fine-tuning techniques (Chapters 5 and 6), demonstrating how to customize LLMs for specific tasks through methods like LoRA and QLoRA, and includes Python code samples for hands-on learning. Readers are also introduced to the transformer architecture's attention mechanism (Chapter 8), with step-by-step guidance on implementing self-attention layers. For developers aiming to optimize LLM performance, the book concludes with quantization techniques (Chapters 9 and 10), exploring strategies like dynamic quantization and probabilistic quantization, which help reduce model size without sacrificing performance.FEATURES. Covers the full lifecycle of working with LLMs, from model selection to deployment. Includes code samples using practical Python code for implementing prompt engineering, fine-tuning, and quantization. Teaches readers to enhance model efficiency with advanced optimization techniques. Includes companion files with code and images -- available from the publisher.

  • Oswald Campesato

    Edité par De Gruyter, New York, 2025

    ISBN 10 : 1501523562 ISBN 13 : 9781501523564

    Langue: anglais

    Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis

    Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

    Contacter le vendeur

    impression à la demande

    EUR 46,55

    Gratuit expédition vers Etats-Unis

    Quantité disponible : 1 disponible(s)

    Ajouter au panier

    Paperback. Etat : new. Paperback. This book offers a thorough exploration of Large Language Models (LLMs), guiding developers through the evolving landscape of generative AI and equipping them with the skills to utilize LLMs in practical applications. Designed for developers with a foundational understanding of machine learning, this book covers essential topics such as prompt engineering techniques, fine-tuning methods, attention mechanisms, and quantization strategies to optimize and deploy LLMs. Beginning with an introduction to generative AI, the book explains distinctions between conversational AI and generative models like GPT-4 and BERT, laying the groundwork for prompt engineering (Chapters 2 and 3). Some of the LLMs that are used for generating completions to prompts include Llama-3.1 405B, Llama 3, GPT-4o, Claude 3, Google Gemini, and Meta AI. Readers learn the art of creating effective prompts, covering advanced methods like Chain of Thought (CoT) and Tree of Thought prompts. As the book progresses, it details fine-tuning techniques (Chapters 5 and 6), demonstrating how to customize LLMs for specific tasks through methods like LoRA and QLoRA, and includes Python code samples for hands-on learning. Readers are also introduced to the transformer architectures attention mechanism (Chapter 8), with step-by-step guidance on implementing self-attention layers. For developers aiming to optimize LLM performance, the book concludes with quantization techniques (Chapters 9 and 10), exploring strategies like dynamic quantization and probabilistic quantization, which help reduce model size without sacrificing performance.FEATURES Covers the full lifecycle of working with LLMs, from model selection to deployment Includes code samples using practical Python code for implementing prompt engineering, fine-tuning, and quantization Teaches readers to enhance model efficiency with advanced optimization techniques Includes companion files with code and images -- available from the publisher This book offers a thorough exploration of Large Language Models (LLMs), guiding developers through the evolving landscape of generative AI and equipping them with the skills to utilize LLMs in practical applications. Designed for developers with a foundational understanding of machine learning, this book covers essential topics such as prompt engi This item is printed on demand. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.

  • Oswald Campesato

    Edité par de Gruyter, 2025

    ISBN 10 : 1501523562 ISBN 13 : 9781501523564

    Langue: anglais

    Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni

    Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

    Contacter le vendeur

    impression à la demande

    EUR 51,24

    EUR 8,66 expédition depuis Royaume-Uni vers Etats-Unis

    Quantité disponible : Plus de 20 disponibles

    Ajouter au panier

    PAP. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.

  • Oswald Campesato

    Edité par Mercury Learning And Information, De Gruyter Jan 2025, 2025

    ISBN 10 : 1501523562 ISBN 13 : 9781501523564

    Langue: anglais

    Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

    Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

    Contacter le vendeur

    impression à la demande

    EUR 58,95

    EUR 23 expédition depuis Allemagne vers Etats-Unis

    Quantité disponible : 1 disponible(s)

    Ajouter au panier

    Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book offers a thorough exploration of Large Language Models (LLMs), guiding developers through the evolving landscape of generative AI and equipping them with the skills to utilize LLMs in practical applications. Designed for developers with a foundational understanding of machine learning, this book covers essential topics such as prompt engineering techniques, fine-tuning methods, attention mechanisms, and quantization strategies to optimize and deploy LLMs. Beginning with an introduction to generative AI, the book explains distinctions between conversational AI and generative models like GPT-4 and BERT, laying the groundwork for prompt engineering (Chapters 2 and 3). Some of the LLMs that are used for generating completions to prompts include Llama-3.1 405B, Llama 3, GPT-4o, Claude 3, Google Gemini, and Meta AI. Readers learn the art of creating effective prompts, covering advanced methods like Chain of Thought (CoT) and Tree of Thought prompts. As the book progresses, it details fine-tuning techniques (Chapters 5 and 6), demonstrating how to customize LLMs for specific tasks through methods like LoRA and QLoRA, and includes Python code samples for hands-on learning. Readers are also introduced to the transformer architecture's attention mechanism (Chapter 8), with step-by-step guidance on implementing self-attention layers. For developers aiming to optimize LLM performance, the book concludes with quantization techniques (Chapters 9 and 10), exploring strategies like dynamic quantization and probabilistic quantization, which help reduce model size without sacrificing performance.FEATURES- Covers the full lifecycle of working with LLMs, from model selection to deployment- Includes code samples using practical Python code for implementing prompt engineering, fine-tuning, and quantization- Teaches readers to enhance model efficiency with advanced optimization techniques- Includes companion files with code and images -- available from the publisher 1046 pp. Englisch.

  • Oswald Campesato

    Edité par De Gruyter, New York, 2025

    ISBN 10 : 1501523562 ISBN 13 : 9781501523564

    Langue: anglais

    Vendeur : CitiRetail, Stevenage, Royaume-Uni

    Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

    Contacter le vendeur

    impression à la demande

    EUR 56,69

    EUR 42 expédition depuis Royaume-Uni vers Etats-Unis

    Quantité disponible : 1 disponible(s)

    Ajouter au panier

    Paperback. Etat : new. Paperback. This book offers a thorough exploration of Large Language Models (LLMs), guiding developers through the evolving landscape of generative AI and equipping them with the skills to utilize LLMs in practical applications. Designed for developers with a foundational understanding of machine learning, this book covers essential topics such as prompt engineering techniques, fine-tuning methods, attention mechanisms, and quantization strategies to optimize and deploy LLMs. Beginning with an introduction to generative AI, the book explains distinctions between conversational AI and generative models like GPT-4 and BERT, laying the groundwork for prompt engineering (Chapters 2 and 3). Some of the LLMs that are used for generating completions to prompts include Llama-3.1 405B, Llama 3, GPT-4o, Claude 3, Google Gemini, and Meta AI. Readers learn the art of creating effective prompts, covering advanced methods like Chain of Thought (CoT) and Tree of Thought prompts. As the book progresses, it details fine-tuning techniques (Chapters 5 and 6), demonstrating how to customize LLMs for specific tasks through methods like LoRA and QLoRA, and includes Python code samples for hands-on learning. Readers are also introduced to the transformer architectures attention mechanism (Chapter 8), with step-by-step guidance on implementing self-attention layers. For developers aiming to optimize LLM performance, the book concludes with quantization techniques (Chapters 9 and 10), exploring strategies like dynamic quantization and probabilistic quantization, which help reduce model size without sacrificing performance.FEATURES Covers the full lifecycle of working with LLMs, from model selection to deployment Includes code samples using practical Python code for implementing prompt engineering, fine-tuning, and quantization Teaches readers to enhance model efficiency with advanced optimization techniques Includes companion files with code and images -- available from the publisher This book offers a thorough exploration of Large Language Models (LLMs), guiding developers through the evolving landscape of generative AI and equipping them with the skills to utilize LLMs in practical applications. Designed for developers with a foundational understanding of machine learning, this book covers essential topics such as prompt engi This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.

  • Oswald Campesato

    Edité par De Gruyter Mouton, 2025

    ISBN 10 : 1501523562 ISBN 13 : 9781501523564

    Langue: anglais

    Vendeur : moluna, Greven, Allemagne

    Évaluation du vendeur 4 sur 5 étoiles Evaluation 4 étoiles, En savoir plus sur les évaluations des vendeurs

    Contacter le vendeur

    impression à la demande

    EUR 51,60

    EUR 48,99 expédition depuis Allemagne vers Etats-Unis

    Quantité disponible : Plus de 20 disponibles

    Ajouter au panier

    Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Oswald Campesato (San Francisco, CA) specializes in Deep Learning, Python, Data Science, and Generative AI. He is the author/co-author of over forty-five books including Google Gemini for Python, Large Language Models, and GPT-4 for Developers (all Mercury .

  • Oswald Campesato

    Edité par Mercury Learning And Information, De Gruyter Jan 2025, 2025

    ISBN 10 : 1501523562 ISBN 13 : 9781501523564

    Langue: anglais

    Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

    Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

    Contacter le vendeur

    impression à la demande

    EUR 58,95

    EUR 60 expédition depuis Allemagne vers Etats-Unis

    Quantité disponible : 1 disponible(s)

    Ajouter au panier

    Taschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book offers a thorough exploration of Large Language Models (LLMs), guiding developers through the evolving landscape of generative AI and equipping them with the skills to utilize LLMs in practical applications. Designed for developers with a foundational understanding of machine learning, this book covers essential topics such as prompt engineering techniques, fine-tuning methods, attention mechanisms, and quantization strategies to optimize and deploy LLMs. Beginning with an introduction to generative AI, the book explains distinctions between conversational AI and generative models like GPT-4 and BERT, laying the groundwork for prompt engineering (Chapters 2 and 3). Some of the LLMs that are used for generating completions to prompts include Llama-3.1 405B, Llama 3, GPT-4o, Claude 3, Google Gemini, and Meta AI. Readers learn the art of creating effective prompts, covering advanced methods like Chain of Thought (CoT) and Tree of Thought prompts. As the book progresses, it details fine-tuning techniques (Chapters 5 and 6), demonstrating how to customize LLMs for specific tasks through methods like LoRA and QLoRA, and includes Python code samples for hands-on learning. Readers are also introduced to the transformer architecture's attention mechanism (Chapter 8), with step-by-step guidance on implementing self-attention layers. For developers aiming to optimize LLM performance, the book concludes with quantization techniques (Chapters 9 and 10), exploring strategies like dynamic quantization and probabilistic quantization, which help reduce model size without sacrificing performance.FEATURES¿ Covers the full lifecycle of working with LLMs, from model selection to deployment¿ Includes code samples using practical Python code for implementing prompt engineering, fine-tuning, and quantization¿ Teaches readers to enhance model efficiency with advanced optimization techniques¿ Includes companion files with code and images -- available from the publisherWalter de Gruyter, Genthiner Straße 13, 10785 Berlin 1046 pp. Englisch.

  • Oswald Campesato

    Edité par Mercury Learning And Information, De Gruyter Akademie Forschung, 2025

    ISBN 10 : 1501523562 ISBN 13 : 9781501523564

    Langue: anglais

    Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

    Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

    Contacter le vendeur

    impression à la demande

    EUR 65,89

    EUR 67,40 expédition depuis Allemagne vers Etats-Unis

    Quantité disponible : 1 disponible(s)

    Ajouter au panier

    Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This book offers a thorough exploration of Large Language Models (LLMs), guiding developers through the evolving landscape of generative AI and equipping them with the skills to utilize LLMs in practical applications. Designed for developers with a foundational understanding of machine learning, this book covers essential topics such as prompt engineering techniques, fine-tuning methods, attention mechanisms, and quantization strategies to optimize and deploy LLMs. Beginning with an introduction to generative AI, the book explains distinctions between conversational AI and generative models like GPT-4 and BERT, laying the groundwork for prompt engineering (Chapters 2 and 3). Some of the LLMs that are used for generating completions to prompts include Llama-3.1 405B, Llama 3, GPT-4o, Claude 3, Google Gemini, and Meta AI. Readers learn the art of creating effective prompts, covering advanced methods like Chain of Thought (CoT) and Tree of Thought prompts. As the book progresses, it details fine-tuning techniques (Chapters 5 and 6), demonstrating how to customize LLMs for specific tasks through methods like LoRA and QLoRA, and includes Python code samples for hands-on learning. Readers are also introduced to the transformer architecture's attention mechanism (Chapter 8), with step-by-step guidance on implementing self-attention layers. For developers aiming to optimize LLM performance, the book concludes with quantization techniques (Chapters 9 and 10), exploring strategies like dynamic quantization and probabilistic quantization, which help reduce model size without sacrificing performance.FEATURES- Covers the full lifecycle of working with LLMs, from model selection to deployment- Includes code samples using practical Python code for implementing prompt engineering, fine-tuning, and quantization- Teaches readers to enhance model efficiency with advanced optimization techniques- Includes companion files with code and images -- available from the publisher.