EUR 14,10
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierHardcover. Etat : Very Good. No Jacket. Missing dust jacket; May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less 2.17.
Vendeur : Better World Books: West, Reno, NV, Etats-Unis
Edition originale
EUR 14,85
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : Good. 1st Edition. Used book that is in clean, average condition without any missing pages.
Edité par MIT Press, Cambridge, MA, 2007
ISBN 10 : 0262026252 ISBN 13 : 9780262026253
Langue: anglais
EUR 11,93
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierCloth. Etat : Very Good to Near Fine. 396 pp. Tightly bound. Corners not bumped. Text is free of markings. The letter "T" stamp on bottom fore-edge.
Edité par LAP LAMBERT Academic Publishing, 2011
ISBN 10 : 384654146X ISBN 13 : 9783846541463
Langue: anglais
Vendeur : Ammareal, Morangis, France
Quantité disponible : 1 disponible(s)
Ajouter au panierSoftcover. Etat : Bon. Ancien livre de bibliothèque. Edition 2011. Ammareal reverse jusqu'à 15% du prix net de cet article à des organisations caritatives. ENGLISH DESCRIPTION Book Condition: Used, Good. Former library book. Edition 2011. Ammareal gives back up to 15% of this item's net price to charity organizations.
Vendeur : Mesilla Internet, Las Cruces, NM, Etats-Unis
EUR 11,36
Autre deviseQuantité disponible : 6 disponible(s)
Ajouter au panierEtat : New.
Edité par LAP LAMBERT Academic Publishing, 2011
ISBN 10 : 384654146X ISBN 13 : 9783846541463
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 59
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Classification algorithms have been widely used in many application domains. Most of these domains deal with massive collection of data and hence demand classification algorithms that scale well with the size of the data sets involved. A classification algorithm is said to be scalable if there is no significant increase in time and space requirements for the algorithm (without compromising the generalization performance) when dealing with an increase in the training set size. Support Vector Machine (SVM) is one of the most celebrated kernel based classification methods used in Machine Learning. An SVM capable of handling large scale classification problems will definitely be an ideal candidate in many real world applications. The training process involved in SVM classifier is usually formulated as a Quadratic Programing (QP) problem. The existing solution strategies for this problem have an associated time and space complexity that is (at least) quadratic in the number of training points. It makes SVM training very expensive. This thesis addresses the scalability of the training algorithms involved in SVM to make it feasible with large training data sets.