Vendeur : Bluesparrowhawk Books, Chestfield, KENT, Royaume-Uni
EUR 53,07
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierhardcover. Etat : very good. No Jacket. Springer, 2015. Hardback, no dustjacket. Unread copy in very good condition. Sticker to back cover. book.
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 53,80
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Vendeur : Romtrade Corp., STERLING HEIGHTS, MI, Etats-Unis
EUR 90,24
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide.
Vendeur : ALLBOOKS1, Direk, SA, Australie
EUR 102,40
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierBrand new book. Fast ship. Please provide full street address as we are not able to ship to P O box address.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
EUR 103,58
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 105,21
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
EUR 104,03
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 117,95
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : New. pp. 572.
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 111
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 111
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 110,99
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 123,43
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : New. pp. 572 Illus.
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
EUR 124,97
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : New. pp. 572.
Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 144,28
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. pp. 570.
Vendeur : preigu, Osnabrück, Allemagne
EUR 95,55
Autre deviseQuantité disponible : 5 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Lyapunov-Schmidt Methods in Nonlinear Analysis and Applications | Nikolay Sidorov (u. a.) | Taschenbuch | xx | Englisch | 2010 | Springer | EAN 9789048161508 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Vendeur : Revaluation Books, Exeter, Royaume-Uni
EUR 156,34
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierPaperback. Etat : Brand New. 2002 edition. 566 pages. 9.25x6.10x1.29 inches. In Stock.
Edité par Springer Netherlands, Springer Netherlands Okt 2002, 2002
ISBN 10 : 1402009410 ISBN 13 : 9781402009419
Langue: anglais
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 106,99
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierBuch. Etat : Neu. Neuware -Preface Constructing nonlinear parameter-dependent mathematical models is essential in modeling in many scientific research fields. The investigation of branching (bifurcating) solutions of such equations is one of the most important aspects in the analysis of such models. The foundations of the theory of bifurca tions for the functional equations were laid in the well known publications by AM. Lyapunov (1906) [1, vol. 4] (on equilibrium forms of rotating liq uids) and E. Schmidt (1908) [1]. The approach proposed by them has been throughly developed and is presently known as the Lyapunov-Schmidt method (see M.M. Vainberg and V.A Trenogin [1, 2]). A valuable part in the founda tions of the bifurcation theory belongs to A. Poincares ideas [1]. Later, to the end of proving the theorems on existence of bifurcation points, infinite-dimensional generalizations of topological and variational methods were proposed by M.A Krasnoselsky [1], M.M. Vainberg [1] and others. A great contribution to the development and applications of the bifurcation theory has been made by a number of famous 20th century pure and applied mathe maticians (for example, see the bibliography in E. Zeidler [1]).Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 572 pp. Englisch.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 167,44
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 114,36
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Preface Constructing nonlinear parameter-dependent mathematical models is essential in modeling in many scientific research fields. The investigation of branching (bifurcating) solutions of such equations is one of the most important aspects in the analysis of such models. The foundations of the theory of bifurca tions for the functional equations were laid in the well known publications by AM. Lyapunov (1906) [1, vol. 4] (on equilibrium forms of rotating liq uids) and E. Schmidt (1908) [1]. The approach proposed by them has been throughly developed and is presently known as the Lyapunov-Schmidt method (see M.M. Vainberg and V.A Trenogin [1, 2]). A valuable part in the founda tions of the bifurcation theory belongs to A. Poincares ideas [1]. Later, to the end of proving the theorems on existence of bifurcation points, infinite-dimensional generalizations of topological and variational methods were proposed by M.A Krasnoselsky [1], M.M. Vainberg [1] and others. A great contribution to the development and applications of the bifurcation theory has been made by a number of famous 20th century pure and applied mathe maticians (for example, see the bibliography in E. Zeidler [1]).
Edité par Springer Netherlands, Springer Netherlands, 2002
ISBN 10 : 1402009410 ISBN 13 : 9781402009419
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 116,27
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierBuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Preface Constructing nonlinear parameter-dependent mathematical models is essential in modeling in many scientific research fields. The investigation of branching (bifurcating) solutions of such equations is one of the most important aspects in the analysis of such models. The foundations of the theory of bifurca tions for the functional equations were laid in the well known publications by AM. Lyapunov (1906) [1, vol. 4] (on equilibrium forms of rotating liq uids) and E. Schmidt (1908) [1]. The approach proposed by them has been throughly developed and is presently known as the Lyapunov-Schmidt method (see M.M. Vainberg and V.A Trenogin [1, 2]). A valuable part in the founda tions of the bifurcation theory belongs to A. Poincares ideas [1]. Later, to the end of proving the theorems on existence of bifurcation points, infinite-dimensional generalizations of topological and variational methods were proposed by M.A Krasnoselsky [1], M.M. Vainberg [1] and others. A great contribution to the development and applications of the bifurcation theory has been made by a number of famous 20th century pure and applied mathe maticians (for example, see the bibliography in E. Zeidler [1]).
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 189,89
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
EUR 182,79
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : Like New. Like New. book.
Edité par Springer Netherlands Dez 2010, 2010
ISBN 10 : 9048161509 ISBN 13 : 9789048161508
Langue: anglais
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 106,99
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Preface Constructing nonlinear parameter-dependent mathematical models is essential in modeling in many scientific research fields. The investigation of branching (bifurcating) solutions of such equations is one of the most important aspects in the analysis of such models. The foundations of the theory of bifurca tions for the functional equations were laid in the well known publications by AM. Lyapunov (1906) [1, vol. 4] (on equilibrium forms of rotating liq uids) and E. Schmidt (1908) [1]. The approach proposed by them has been throughly developed and is presently known as the Lyapunov-Schmidt method (see M.M. Vainberg and V.A Trenogin [1, 2]). A valuable part in the founda tions of the bifurcation theory belongs to A. Poincares ideas [1]. Later, to the end of proving the theorems on existence of bifurcation points, infinite-dimensional generalizations of topological and variational methods were proposed by M.A Krasnoselsky [1], M.M. Vainberg [1] and others. A great contribution to the development and applications of the bifurcation theory has been made by a number of famous 20th century pure and applied mathe maticians (for example, see the bibliography in E. Zeidler [1]). 572 pp. Englisch.
Edité par Springer Netherlands Okt 2002, 2002
ISBN 10 : 1402009410 ISBN 13 : 9781402009419
Langue: anglais
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 106,99
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierBuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Preface Constructing nonlinear parameter-dependent mathematical models is essential in modeling in many scientific research fields. The investigation of branching (bifurcating) solutions of such equations is one of the most important aspects in the analysis of such models. The foundations of the theory of bifurca tions for the functional equations were laid in the well known publications by AM. Lyapunov (1906) [1, vol. 4] (on equilibrium forms of rotating liq uids) and E. Schmidt (1908) [1]. The approach proposed by them has been throughly developed and is presently known as the Lyapunov-Schmidt method (see M.M. Vainberg and V.A Trenogin [1, 2]). A valuable part in the founda tions of the bifurcation theory belongs to A. Poincares ideas [1]. Later, to the end of proving the theorems on existence of bifurcation points, infinite-dimensional generalizations of topological and variational methods were proposed by M.A Krasnoselsky [1], M.M. Vainberg [1] and others. A great contribution to the development and applications of the bifurcation theory has been made by a number of famous 20th century pure and applied mathe maticians (for example, see the bibliography in E. Zeidler [1]). 572 pp. Englisch.
Vendeur : moluna, Greven, Allemagne
EUR 92,27
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Preface. 1. On Regularization of Linear Equations on the Basis of Perturbation Theory. 2. Investigation of Bifurcation Points of a Nonlinear Equations. 3. Regularization of Computation of Solutions in a Neighborhood of the Branch Point. 4. Iterations, Inter.
Vendeur : moluna, Greven, Allemagne
EUR 92,27
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierGebunden. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Preface. 1. On Regularization of Linear Equations on the Basis of Perturbation Theory. 2. Investigation of Bifurcation Points of a Nonlinear Equations. 3. Regularization of Computation of Solutions in a Neighborhood of the Branch Point. 4. Iterations, Inter.
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 151,84
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. Print on Demand pp. 570 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam.
Edité par Springer-Verlag New York Inc., 2002
ISBN 10 : 1402009410 ISBN 13 : 9781402009419
Langue: anglais
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
EUR 136,31
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierHardback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 1003.
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
EUR 153,63
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. PRINT ON DEMAND pp. 570.
Edité par Springer Netherlands, Springer Netherlands Dez 2010, 2010
ISBN 10 : 9048161509 ISBN 13 : 9789048161508
Langue: anglais
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 106,99
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -Preface Constructing nonlinear parameter-dependent mathematical models is essential in modeling in many scientific research fields. The investigation of branching (bifurcating) solutions of such equations is one of the most important aspects in the analysis of such models. The foundations of the theory of bifurca tions for the functional equations were laid in the well known publications by AM. Lyapunov (1906) [1, vol. 4] (on equilibrium forms of rotating liq uids) and E. Schmidt (1908) [1]. The approach proposed by them has been throughly developed and is presently known as the Lyapunov-Schmidt method (see M.M. Vainberg and V.A Trenogin [1, 2]). A valuable part in the founda tions of the bifurcation theory belongs to A. Poincares ideas [1]. Later, to the end of proving the theorems on existence of bifurcation points, infinite-dimensional generalizations of topological and variational methods were proposed by M.A Krasnoselsky [1], M.M. Vainberg [1] and others. A great contribution to the development and applications of the bifurcation theory has been made by a number of famous 20th century pure and applied mathe maticians (for example, see the bibliography in E. Zeidler [1]).Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 572 pp. Englisch.