Edité par Cambridge University Press (edition 1), 2020
ISBN 10 : 110845514X ISBN 13 : 9781108455145
Langue: anglais
Vendeur : BooksRun, Philadelphia, PA, Etats-Unis
EUR 33,11
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : Very Good. 1. It's a well-cared-for item that has seen limited use. The item may show minor signs of wear. All the text is legible, with all pages included. It may have slight markings and/or highlighting.
Edité par Cambridge University Press CUP, 2020
ISBN 10 : 110845514X ISBN 13 : 9781108455145
Langue: anglais
Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 39,52
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New.
Edité par Cambridge University Press, 2020
ISBN 10 : 110845514X ISBN 13 : 9781108455145
Langue: anglais
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
EUR 49,70
Autre deviseQuantité disponible : 3 disponible(s)
Ajouter au panierPAP. Etat : New. New Book. Shipped from UK. Established seller since 2000.
Edité par Cambridge University Press, 2020
ISBN 10 : 110845514X ISBN 13 : 9781108455145
Langue: anglais
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 52,38
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Edité par Cambridge University Press, 2020
ISBN 10 : 110845514X ISBN 13 : 9781108455145
Langue: anglais
Vendeur : moluna, Greven, Allemagne
EUR 46,85
Autre deviseQuantité disponible : 3 disponible(s)
Ajouter au panierEtat : New. This self-contained textbook introduces all the relevant mathematical concepts needed to understand and use machine learning methods, with a minimum of prerequisites. Topics include linear algebra, analytic geometry, matrix decompositions, vector calculus, .
Edité par Cambridge University Pr. Apr 2020, 2020
ISBN 10 : 110845514X ISBN 13 : 9781108455145
Langue: anglais
Vendeur : Wegmann1855, Zwiesel, Allemagne
EUR 50
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Neuware -The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For studentsand otherswith a mathematical background, these derivations provide a starting point to machine learning texts. Forthoselearning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.
EUR 49,70
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : Brand New. 398 pages. 9.25x6.25x0.25 inches. In Stock.
Edité par Cambridge University Press 2020-04-23, 2020
ISBN 10 : 110845514X ISBN 13 : 9781108455145
Langue: anglais
Vendeur : Chiron Media, Wallingford, Royaume-Uni
EUR 50,63
Autre deviseQuantité disponible : 10 disponible(s)
Ajouter au panierPaperback. Etat : New.
Edité par Cambridge University Press 4/23/2020, 2020
ISBN 10 : 110845514X ISBN 13 : 9781108455145
Langue: anglais
Vendeur : BargainBookStores, Grand Rapids, MI, Etats-Unis
EUR 51,01
Autre deviseQuantité disponible : 5 disponible(s)
Ajouter au panierPaperback or Softback. Etat : New. Mathematics for Machine Learning 1.75. Book.
Edité par Cambridge University Pr. Apr 2020, 2020
ISBN 10 : 110845514X ISBN 13 : 9781108455145
Langue: anglais
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 49,60
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Neuware -The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site. 371 pp. Englisch.
Edité par Cambridge University Pr. Apr 2020, 2020
ISBN 10 : 110845514X ISBN 13 : 9781108455145
Langue: anglais
Vendeur : Rheinberg-Buch Andreas Meier eK, Bergisch Gladbach, Allemagne
EUR 49,60
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Neuware -The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site. 371 pp. Englisch.
Edité par Cambridge University Press, 2020
ISBN 10 : 110845514X ISBN 13 : 9781108455145
Langue: anglais
Vendeur : California Books, Miami, FL, Etats-Unis
EUR 55,74
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Edité par Cambridge University Press, 2020
ISBN 10 : 110845514X ISBN 13 : 9781108455145
Langue: anglais
Vendeur : Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande
EUR 59,46
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. 2020. Paperback. . . . . .
Edité par Cambridge University Press, 2020
ISBN 10 : 110845514X ISBN 13 : 9781108455145
Langue: anglais
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 47,71
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Edité par Cambridge University Press, 2020
ISBN 10 : 110845514X ISBN 13 : 9781108455145
Langue: anglais
Vendeur : SecondSale, Montgomery, IL, Etats-Unis
EUR 35,35
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierEtat : Good. Item in good condition. Textbooks may not include supplemental items i.e. CDs, access codes etc.
Edité par Cambridge University Pr. Apr 2020, 2020
ISBN 10 : 110845514X ISBN 13 : 9781108455145
Langue: anglais
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 50
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Neuware -The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For studentsand otherswith a mathematical background, these derivations provide a starting point to machine learning texts. Forthoselearning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.Libri GmbH, Europaallee 1, 36244 Bad Hersfeld 371 pp. Englisch.
Edité par Cambridge University Press, 2020
ISBN 10 : 110845514X ISBN 13 : 9781108455145
Langue: anglais
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 48,81
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierEtat : New.
Edité par Cambridge University Press, GB, 2020
ISBN 10 : 110845514X ISBN 13 : 9781108455145
Langue: anglais
Vendeur : Rarewaves.com UK, London, Royaume-Uni
EUR 65,76
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierPaperback. Etat : New. The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.
Edité par Cambridge University Press, 2020
ISBN 10 : 110845514X ISBN 13 : 9781108455145
Langue: anglais
Vendeur : Marlton Books, Bridgeton, NJ, Etats-Unis
EUR 32,75
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : Acceptable. Readable, but has significant damage / tears. Has a remainder mark. paperback Used - Acceptable 2020.
Edité par Cambridge University Press, 2020
ISBN 10 : 110845514X ISBN 13 : 9781108455145
Langue: anglais
Vendeur : SecondSale, Montgomery, IL, Etats-Unis
EUR 37,44
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierEtat : Very Good. Item in very good condition! Textbooks may not include supplemental items i.e. CDs, access codes etc.
Edité par Cambridge University Pr. Apr 2020, 2020
ISBN 10 : 110845514X ISBN 13 : 9781108455145
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 56,35
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Neuware - The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.
Edité par Cambridge University Press, 2020
ISBN 10 : 110845514X ISBN 13 : 9781108455145
Langue: anglais
Vendeur : UK BOOKS STORE, London, LONDO, Royaume-Uni
EUR 64,48
Autre deviseQuantité disponible : 5 disponible(s)
Ajouter au panierPaperback. Etat : USED BOOKS. USED BOOKS! Fast Delivery International Edition and ship within 24-48 hours. Deliver by FedEx and Dhl, & Aramex, UPS, & USPS and we do accept APO and PO BOX Addresses. Order can be delivered worldwide within 7-14 days and we do have flat rate for up to 2LB. Extra shipping charges will be requested if the Book weight is more than 5 LB. This Item May be shipped from India, United states & United Kingdom. Depending on your location and availability.
Edité par Cambridge University Press, 2020
ISBN 10 : 1108470041 ISBN 13 : 9781108470049
Langue: anglais
Vendeur : UK BOOKS STORE, London, LONDO, Royaume-Uni
EUR 64,48
Autre deviseQuantité disponible : 5 disponible(s)
Ajouter au panierHardcover. Etat : USED BOOKS. USED BOOKS! Fast Delivery International Edition and ship within 24-48 hours. Deliver by FedEx and Dhl, & Aramex, UPS, & USPS and we do accept APO and PO BOX Addresses. Order can be delivered worldwide within 7-14 days and we do have flat rate for up to 2LB. Extra shipping charges will be requested if the Book weight is more than 5 LB. This Item May be shipped from India, United states & United Kingdom. Depending on your location and availability.
Edité par Cambridge University Press, 2020
ISBN 10 : 110845514X ISBN 13 : 9781108455145
Langue: anglais
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 53,06
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Edité par Cambridge University Press, 2020
ISBN 10 : 1108470041 ISBN 13 : 9781108470049
Langue: anglais
Vendeur : Books From California, Simi Valley, CA, Etats-Unis
EUR 60,04
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierhardcover. Etat : Very Good.
Edité par Cambridge University Press, GB, 2020
ISBN 10 : 110845514X ISBN 13 : 9781108455145
Langue: anglais
Vendeur : Rarewaves.com USA, London, LONDO, Royaume-Uni
EUR 71
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierPaperback. Etat : New. The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.
Edité par Cambridge University Press, GB, 2020
ISBN 10 : 110845514X ISBN 13 : 9781108455145
Langue: anglais
Vendeur : Rarewaves USA, OSWEGO, IL, Etats-Unis
EUR 70
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierPaperback. Etat : New. The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.
Edité par Cambridge University Press, 2020
ISBN 10 : 110845514X ISBN 13 : 9781108455145
Langue: anglais
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 56,62
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierEtat : As New. Unread book in perfect condition.
Edité par Cambridge University Press, GB, 2020
ISBN 10 : 110845514X ISBN 13 : 9781108455145
Langue: anglais
Vendeur : Rarewaves USA United, OSWEGO, IL, Etats-Unis
EUR 72
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierPaperback. Etat : New. The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book's web site.
Edité par Cambridge University Press, 2020
ISBN 10 : 110845514X ISBN 13 : 9781108455145
Langue: anglais
Vendeur : Kennys Bookstore, Olney, MD, Etats-Unis
EUR 73
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. 2020. Paperback. . . . . . Books ship from the US and Ireland.