Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 22,05
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : New. pp. 144.
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 20,08
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : New. pp. 144.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
EUR 66,50
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 71,66
Autre deviseQuantité disponible : 15 disponible(s)
Ajouter au panierEtat : New.
Vendeur : ALLBOOKS1, Direk, SA, Australie
EUR 75,69
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierBrand new book. Fast ship. Please provide full street address as we are not able to ship to P O box address.
Vendeur : California Books, Miami, FL, Etats-Unis
EUR 75,70
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Edité par Springer Nature Switzerland AG, Cham, 2020
ISBN 10 : 3030388506 ISBN 13 : 9783030388508
Langue: anglais
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
EUR 77,47
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : new. Paperback. The book lies at the interface of mathematics, social media analysis, and data science. Its authors aim to introduce a new dynamic modeling approach to the use of partial differential equations for describing information diffusion over online social networks. The eigenvalues and eigenvectors of the Laplacian matrix for the underlying social network are used to find communities (clusters) of online users. Once these clusters are embedded in a Euclidean space, the mathematical models, which are reaction-diffusion equations, are developed based on intuitive social distances between clusters within the Euclidean space. The models are validated with data from major social media such as Twitter. In addition, mathematical analysis of these models is applied, revealing insights into information flow on social media. Two applications with geocoded Twitter data are included in the book: one describing the social movement in Twitter during the Egyptian revolution in 2011 and another predicting influenza prevalence. The new approach advocates a paradigm shift for modeling information diffusion in online social networks and lays the theoretical groundwork for many spatio-temporal modeling problems in the big-data era. The book lies at the interface of mathematics, social media analysis, and data science. The new approach advocates a paradigm shift for modeling information diffusion in online social networks and lays the theoretical groundwork for many spatio-temporal modeling problems in the big-data era. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 85,21
Autre deviseQuantité disponible : 15 disponible(s)
Ajouter au panierEtat : As New. Unread book in perfect condition.
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 72,53
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Vendeur : Chiron Media, Wallingford, Royaume-Uni
EUR 68,63
Autre deviseQuantité disponible : 10 disponible(s)
Ajouter au panierPF. Etat : New.
Vendeur : Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande
EUR 94,62
Autre deviseQuantité disponible : 15 disponible(s)
Ajouter au panierEtat : New.
Vendeur : Revaluation Books, Exeter, Royaume-Uni
EUR 96,74
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierPaperback. Etat : Brand New. 160 pages. 9.25x6.10x0.34 inches. In Stock.
EUR 118,47
Autre deviseQuantité disponible : 15 disponible(s)
Ajouter au panierEtat : New.
Edité par Springer International Publishing, Springer International Publishing Mär 2020, 2020
ISBN 10 : 3030388506 ISBN 13 : 9783030388508
Langue: anglais
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 69,54
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Neuware -The book lies at the interface of mathematics, social media analysis, and data science. Its authors aim to introduce a new dynamic modeling approach to the use of partial differential equations for describing information diffusion over online social networks. The eigenvalues and eigenvectors of the Laplacian matrix for the underlying social network are used to find communities (clusters) of online users. Once these clusters are embedded in a Euclidean space, the mathematical models, which are reaction-diffusion equations, are developed based on intuitive social distances between clusters within the Euclidean space. The models are validated with data from major social media such as Twitter. In addition, mathematical analysis of these models is applied, revealing insights into information flow on social media. Two applications with geocoded Twitter data are included in the book: one describing the social movement in Twitter during the Egyptian revolution in 2011 and another predicting influenza prevalence. The new approach advocates a paradigm shift for modeling information diffusion in online social networks and lays the theoretical groundwork for many spatio-temporal modeling problems in the big-data era.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 160 pp. Englisch.
Edité par Springer International Publishing, Springer International Publishing, 2020
ISBN 10 : 3030388506 ISBN 13 : 9783030388508
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 69,54
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - The book lies at the interface of mathematics, social media analysis, and data science. Its authors aim to introduce a new dynamic modeling approach to the use of partial differential equations for describing information diffusion over online social networks. The eigenvalues and eigenvectors of the Laplacian matrix for the underlying social network are used to find communities (clusters) of online users. Once these clusters are embedded in a Euclidean space, the mathematical models, which are reaction-diffusion equations, are developed based on intuitive social distances between clusters within the Euclidean space. The models are validated with data from major social media such as Twitter. In addition, mathematical analysis of these models is applied, revealing insights into information flow on social media. Two applications with geocoded Twitter data are included in the book: one describing the social movement in Twitter during the Egyptian revolution in 2011 and another predicting influenza prevalence. The new approach advocates a paradigm shift for modeling information diffusion in online social networks and lays the theoretical groundwork for many spatio-temporal modeling problems in the big-data era.
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
EUR 111,36
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : New. New. book.
Edité par Springer Nature Switzerland AG, Cham, 2020
ISBN 10 : 3030388506 ISBN 13 : 9783030388508
Langue: anglais
Vendeur : AussieBookSeller, Truganina, VIC, Australie
EUR 130,35
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : new. Paperback. The book lies at the interface of mathematics, social media analysis, and data science. Its authors aim to introduce a new dynamic modeling approach to the use of partial differential equations for describing information diffusion over online social networks. The eigenvalues and eigenvectors of the Laplacian matrix for the underlying social network are used to find communities (clusters) of online users. Once these clusters are embedded in a Euclidean space, the mathematical models, which are reaction-diffusion equations, are developed based on intuitive social distances between clusters within the Euclidean space. The models are validated with data from major social media such as Twitter. In addition, mathematical analysis of these models is applied, revealing insights into information flow on social media. Two applications with geocoded Twitter data are included in the book: one describing the social movement in Twitter during the Egyptian revolution in 2011 and another predicting influenza prevalence. The new approach advocates a paradigm shift for modeling information diffusion in online social networks and lays the theoretical groundwork for many spatio-temporal modeling problems in the big-data era. The book lies at the interface of mathematics, social media analysis, and data science. The new approach advocates a paradigm shift for modeling information diffusion in online social networks and lays the theoretical groundwork for many spatio-temporal modeling problems in the big-data era. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Edité par Springer International Publishing Mrz 2020, 2020
ISBN 10 : 3030388506 ISBN 13 : 9783030388508
Langue: anglais
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 69,54
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The book lies at the interface of mathematics, social media analysis, and data science. Its authors aim to introduce a new dynamic modeling approach to the use of partial differential equations for describing information diffusion over online social networks. The eigenvalues and eigenvectors of the Laplacian matrix for the underlying social network are used to find communities (clusters) of online users. Once these clusters are embedded in a Euclidean space, the mathematical models, which are reaction-diffusion equations, are developed based on intuitive social distances between clusters within the Euclidean space. The models are validated with data from major social media such as Twitter. In addition, mathematical analysis of these models is applied, revealing insights into information flow on social media. Two applications with geocoded Twitter data are included in the book: one describing the social movement in Twitter during the Egyptian revolution in 2011 and another predicting influenza prevalence. The new approach advocates a paradigm shift for modeling information diffusion in online social networks and lays the theoretical groundwork for many spatio-temporal modeling problems in the big-data era. 160 pp. Englisch.
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
EUR 97,48
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. PRINT ON DEMAND pp. 144.
Edité par Springer International Publishing, 2020
ISBN 10 : 3030388506 ISBN 13 : 9783030388508
Langue: anglais
Vendeur : moluna, Greven, Allemagne
EUR 60,06
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierKartoniert / Broschiert. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Provides a new and timely modeling approach for information diffusion in social mediaWritten by the experts who initiated the approach of modeling with partial differential equations (PDEs)Accessible to a wide range of readers in mat.