Vendeur : Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande
EUR 44,82
Autre deviseQuantité disponible : 15 disponible(s)
Ajouter au panierEtat : New.
Vendeur : Kennys Bookstore, Olney, MD, Etats-Unis
EUR 47
Autre deviseQuantité disponible : 15 disponible(s)
Ajouter au panierEtat : New.
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 56,82
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Edité par Springer Nature Switzerland, Springer International Publishing, 2025
ISBN 10 : 3031850556 ISBN 13 : 9783031850554
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 53,49
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book aims to handle dynamic equations on time scales using artificial neural network (ANN). Basic facts and methods for ANN modeling are considered. The multilayer artificial neural network (ANN) model is introduced for solving of dynamic equations on arbitrary time scales. A multilayer ANN model with one input layer containing a single node, a hidden layer with m nodes, and one output node are investigated. The feed-forward neural network model and unsupervised error back-propagation algorithm are developed. Modification of network parameters is done without the use of any optimization technique. The regression-based neural network (RBNN) model is introduced for solving dynamic equations on arbitrary time scales. The RBNN trial solution of dynamic equations is obtained by using the RBNN model for single input and single output system. A variety of initial and boundary value problems are solved. The Chebyshev neural network (ChNN) model and Levendre neural network model are developed. The ChNN trial solution of dynamic equations is obtained by using the ChNN model for single input and single output system.This book is addressed to a wide audience of specialists such as mathematicians, physicists, engineers, and biologists. It can be used as a textbook at the graduate level and as a reference book for several disciplines.
Vendeur : California Books, Miami, FL, Etats-Unis
EUR 60,23
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 53,92
Autre deviseQuantité disponible : 15 disponible(s)
Ajouter au panierEtat : New.
Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 68,95
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 61,95
Autre deviseQuantité disponible : 15 disponible(s)
Ajouter au panierEtat : As New. Unread book in perfect condition.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 64,66
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 66,13
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Edité par Springer International Publishing AG, Cham, 2025
ISBN 10 : 3031850556 ISBN 13 : 9783031850554
Langue: anglais
Vendeur : CitiRetail, Stevenage, Royaume-Uni
EUR 64,67
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : new. Paperback. This book aims to handle dynamic equations on time scales using artificial neural network (ANN). Basic facts and methods for ANN modeling are considered. The multilayer artificial neural network (ANN) model is introduced for solving of dynamic equations on arbitrary time scales. A multilayer ANN model with one input layer containing a single node, a hidden layer with m nodes, and one output node are investigated. The feed-forward neural network model and unsupervised error back-propagation algorithm are developed. Modification of network parameters is done without the use of any optimization technique. The regression-based neural network (RBNN) model is introduced for solving dynamic equations on arbitrary time scales. The RBNN trial solution of dynamic equations is obtained by using the RBNN model for single input and single output system. A variety of initial and boundary value problems are solved. The Chebyshev neural network (ChNN) model and Levendre neural network model are developed. The ChNN trial solution of dynamic equations is obtained by using the ChNN model for single input and single output system. This book is addressed to a wide audience of specialists such as mathematicians, physicists, engineers, and biologists. It can be used as a textbook at the graduate level and as a reference book for several disciplines. This book aims to handle dynamic equations on time scales using artificial neural network (ANN). The multilayer artificial neural network (ANN) model is introduced for solving of dynamic equations on arbitrary time scales. The Chebyshev neural network (ChNN) model and Levendre neural network model are developed. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Edité par Springer International Publishing AG, Cham, 2025
ISBN 10 : 3031850556 ISBN 13 : 9783031850554
Langue: anglais
Vendeur : AussieBookSeller, Truganina, VIC, Australie
EUR 82,05
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : new. Paperback. This book aims to handle dynamic equations on time scales using artificial neural network (ANN). Basic facts and methods for ANN modeling are considered. The multilayer artificial neural network (ANN) model is introduced for solving of dynamic equations on arbitrary time scales. A multilayer ANN model with one input layer containing a single node, a hidden layer with m nodes, and one output node are investigated. The feed-forward neural network model and unsupervised error back-propagation algorithm are developed. Modification of network parameters is done without the use of any optimization technique. The regression-based neural network (RBNN) model is introduced for solving dynamic equations on arbitrary time scales. The RBNN trial solution of dynamic equations is obtained by using the RBNN model for single input and single output system. A variety of initial and boundary value problems are solved. The Chebyshev neural network (ChNN) model and Levendre neural network model are developed. The ChNN trial solution of dynamic equations is obtained by using the ChNN model for single input and single output system. This book is addressed to a wide audience of specialists such as mathematicians, physicists, engineers, and biologists. It can be used as a textbook at the graduate level and as a reference book for several disciplines. This book aims to handle dynamic equations on time scales using artificial neural network (ANN). The multilayer artificial neural network (ANN) model is introduced for solving of dynamic equations on arbitrary time scales. The Chebyshev neural network (ChNN) model and Levendre neural network model are developed. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Edité par Springer International Publishing AG, Cham, 2025
ISBN 10 : 3031850556 ISBN 13 : 9783031850554
Langue: anglais
Vendeur : Grand Eagle Retail, Mason, OH, Etats-Unis
EUR 56,27
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : new. Paperback. This book aims to handle dynamic equations on time scales using artificial neural network (ANN). Basic facts and methods for ANN modeling are considered. The multilayer artificial neural network (ANN) model is introduced for solving of dynamic equations on arbitrary time scales. A multilayer ANN model with one input layer containing a single node, a hidden layer with m nodes, and one output node are investigated. The feed-forward neural network model and unsupervised error back-propagation algorithm are developed. Modification of network parameters is done without the use of any optimization technique. The regression-based neural network (RBNN) model is introduced for solving dynamic equations on arbitrary time scales. The RBNN trial solution of dynamic equations is obtained by using the RBNN model for single input and single output system. A variety of initial and boundary value problems are solved. The Chebyshev neural network (ChNN) model and Levendre neural network model are developed. The ChNN trial solution of dynamic equations is obtained by using the ChNN model for single input and single output system. This book is addressed to a wide audience of specialists such as mathematicians, physicists, engineers, and biologists. It can be used as a textbook at the graduate level and as a reference book for several disciplines. This book aims to handle dynamic equations on time scales using artificial neural network (ANN). The multilayer artificial neural network (ANN) model is introduced for solving of dynamic equations on arbitrary time scales. The Chebyshev neural network (ChNN) model and Levendre neural network model are developed. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Vendeur : moluna, Greven, Allemagne
EUR 48,37
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt.
Edité par Springer, Berlin, Springer Nature Switzerland, Springer, 2025
ISBN 10 : 3031850556 ISBN 13 : 9783031850554
Langue: anglais
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 53,49
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book aims to handle dynamic equations on time scales using artificial neural network (ANN). Basic facts and methods for ANN modeling are considered. The multilayer artificial neural network (ANN) model is introduced for solving of dynamic equations on arbitrary time scales. A multilayer ANN model with one input layer containing a single node, a hidden layer with m nodes, and one output node are investigated. The feed-forward neural network model and unsupervised error back-propagation algorithm are developed. Modification of network parameters is done without the use of any optimization technique. The regression-based neural network (RBNN) model is introduced for solving dynamic equations on arbitrary time scales. The RBNN trial solution of dynamic equations is obtained by using the RBNN model for single input and single output system. A variety of initial and boundary value problems are solved. The Chebyshev neural network (ChNN) model and Levendre neural network model are developed. The ChNN trial solution of dynamic equations is obtained by using the ChNN model for single input and single output system.This book is addressed to a wide audience of specialists such as mathematicians, physicists, engineers, and biologists. It can be used as a textbook at the graduate level and as a reference book for several disciplines. 112 pp. Englisch.
Edité par Springer Nature Switzerland, Springer Nature Switzerland Mär 2025, 2025
ISBN 10 : 3031850556 ISBN 13 : 9783031850554
Langue: anglais
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 53,49
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book aims to handle dynamic equations on time scales using artificial neural network (ANN). Basic facts and methods for ANN modeling are considered. The multilayer artificial neural network (ANN) model is introduced for solving of dynamic equations on arbitrary time scales. A multilayer ANN model with one input layer containing a single node, a hidden layer with m nodes, and one output node are investigated. The feed-forward neural network model and unsupervised error back-propagation algorithm are developed. Modification of network parameters is done without the use of any optimization technique. The regression-based neural network (RBNN) model is introduced for solving dynamic equations on arbitrary time scales. The RBNN trial solution of dynamic equations is obtained by using the RBNN model for single input and single output system. A variety of initial and boundary value problems are solved. The Chebyshev neural network (ChNN) model and Levendre neural network model are developed. The ChNN trial solution of dynamic equations is obtained by using the ChNN model for single input and single output system.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 120 pp. Englisch.
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 70,16
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. Print on Demand.
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
EUR 71,94
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. PRINT ON DEMAND.