Vendeur : Antiquariat Bookfarm, Löbnitz, Allemagne
EUR 15,20
Quantité disponible : 1 disponible(s)
Ajouter au panierHardcover. 131 S. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. Ex-library in GOOD condition with library-signature and stamp(s). Some traces of use. R-16475 3764334738 Sprache: Englisch Gewicht in Gramm: 550.
Vendeur : Antiquariat Bookfarm, Löbnitz, Allemagne
EUR 19,99
Quantité disponible : 1 disponible(s)
Ajouter au panierHardcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ancien Exemplaire de bibliothèque avec signature et cachet. BON état, quelques traces d'usure. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. 22 BOR 9780817634735 Sprache: Englisch Gewicht in Gramm: 550.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
EUR 52,40
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : PAPER CAVALIER UK, London, Royaume-Uni
EUR 50,42
Quantité disponible : 1 disponible(s)
Ajouter au panierEtat : very good. Gently used. May include previous owner's signature or bookplate on the front endpaper, sticker on back and/or remainder mark on text block.
Edité par Boston. Birkhäuser Verlag., 1989
ISBN 10 : 3764334738 ISBN 13 : 9783764334734
Langue: anglais
Vendeur : Antiquariat Bernhardt, Kassel, Allemagne
EUR 15,18
Quantité disponible : 1 disponible(s)
Ajouter au panierKarton. Etat : Sehr gut. Zust: Gutes Exemplar. 131 Seiten, mit Abbildungen, Englisch 388g.
Vendeur : Chiron Media, Wallingford, Royaume-Uni
EUR 55,86
Quantité disponible : 10 disponible(s)
Ajouter au panierPaperback. Etat : New.
Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 72,69
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. pp. 148.
Vendeur : Wonder Book, Frederick, MD, Etats-Unis
EUR 88,57
Quantité disponible : 1 disponible(s)
Ajouter au panierEtat : As New. Like New condition. A near perfect copy that may have very minor cosmetic defects.
Vendeur : Romtrade Corp., STERLING HEIGHTS, MI, Etats-Unis
EUR 90,11
Quantité disponible : 1 disponible(s)
Ajouter au panierEtat : New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide.
Vendeur : ALLBOOKS1, Direk, SA, Australie
EUR 100,96
Quantité disponible : 1 disponible(s)
Ajouter au panierBrand new book. Fast ship. Please provide full street address as we are not able to ship to P O box address.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
EUR 112,30
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 114,24
Quantité disponible : 1 disponible(s)
Ajouter au panierEtat : New. pp. 148.
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 58,39
Quantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - 1. The Subject Matter. Consider a complex semisimple Lie group G with Lie algebra g and Weyl group W. In this book, we present a geometric perspective on the following circle of ideas: polynomials The 'vertices' of this graph are some of the most important objects in representation theory. Each has a theory in its own right, and each has had its own independent historical development. - A nilpotent orbit is an orbit of the adjoint action of G on g which contains the zero element of g in its closure. (For the special linear group 2 G = SL(n,C), whose Lie algebra 9 is all n x n matrices with trace zero, an adjoint orbit consists of all matrices with a given Jordan canonical form; such an orbit is nilpotent if the Jordan form has only zeros on the diagonal. In this case, the nilpotent orbits are classified by partitions of n, given by the sizes of the Jordan blocks.) The closures of the nilpotent orbits are singular in general, and understanding their singularities is an important problem. - The classification of irreducible Weyl group representations is quite old.
Vendeur : preigu, Osnabrück, Allemagne
EUR 50,35
Quantité disponible : 5 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Nilpotent Orbits, Primitive Ideals, and Characteristic Classes | A Geometric Perspective in Ring Theory | Walter Borho (u. a.) | Taschenbuch | viii | Englisch | 2011 | Birkhäuser | EAN 9781461289104 | Verantwortliche Person für die EU: Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
EUR 100,16
Quantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : Like New. Like New. book.
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 120,76
Quantité disponible : 1 disponible(s)
Ajouter au panierEtat : New. pp. 148 52:B&W 6.14 x 9.21in or 234 x 156mm (Royal 8vo) Case Laminate on White w/Gloss Lam.
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
EUR 122,05
Quantité disponible : 1 disponible(s)
Ajouter au panierEtat : New. pp. 148.
Edité par Birkhäuser Boston, Birkhäuser Boston Dez 1989, 1989
ISBN 10 : 0817634738 ISBN 13 : 9780817634735
Langue: anglais
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 117,69
Quantité disponible : 2 disponible(s)
Ajouter au panierBuch. Etat : Neu. Neuware -1. The Subject Matter. Consider a complex semisimple Lie group G with Lie algebra g and Weyl group W. In this book, we present a geometric perspective on the following circle of ideas: polynomials The 'vertices' of this graph are some of the most important objects in representation theory. Each has a theory in its own right, and each has had its own independent historical development. - A nilpotent orbit is an orbit of the adjoint action of G on g which contains the zero element of g in its closure. (For the special linear group 2 G = SL(n,C), whose Lie algebra 9 is all n x n matrices with trace zero, an adjoint orbit consists of all matrices with a given Jordan canonical form; such an orbit is nilpotent if the Jordan form has only zeros on the diagonal. In this case, the nilpotent orbits are classified by partitions of n, given by the sizes of the Jordan blocks.) The closures of the nilpotent orbits are singular in general, and understanding their singularities is an important problem. - The classification of irreducible Weyl group representations is quite old.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 148 pp. Englisch.
Edité par Birkhäuser Boston, Birkhäuser Boston, 1989
ISBN 10 : 0817634738 ISBN 13 : 9780817634735
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 122,09
Quantité disponible : 1 disponible(s)
Ajouter au panierBuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - 1. The Subject Matter. Consider a complex semisimple Lie group G with Lie algebra g and Weyl group W. In this book, we present a geometric perspective on the following circle of ideas: polynomials The 'vertices' of this graph are some of the most important objects in representation theory. Each has a theory in its own right, and each has had its own independent historical development. - A nilpotent orbit is an orbit of the adjoint action of G on g which contains the zero element of g in its closure. (For the special linear group 2 G = SL(n,C), whose Lie algebra 9 is all n x n matrices with trace zero, an adjoint orbit consists of all matrices with a given Jordan canonical form; such an orbit is nilpotent if the Jordan form has only zeros on the diagonal. In this case, the nilpotent orbits are classified by partitions of n, given by the sizes of the Jordan blocks.) The closures of the nilpotent orbits are singular in general, and understanding their singularities is an important problem. - The classification of irreducible Weyl group representations is quite old.
Edité par Birkhäuser, Birkhäuser Okt 2011, 2011
ISBN 10 : 1461289106 ISBN 13 : 9781461289104
Langue: anglais
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 53,49
Quantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -1. The Subject Matter. Consider a complex semisimple Lie group G with Lie algebra g and Weyl group W. In this book, we present a geometric perspective on the following circle of ideas: polynomials The 'vertices' of this graph are some of the most important objects in representation theory. Each has a theory in its own right, and each has had its own independent historical development. - A nilpotent orbit is an orbit of the adjoint action of G on g which contains the zero element of g in its closure. (For the special linear group 2 G = SL(n,C), whose Lie algebra 9 is all n x n matrices with trace zero, an adjoint orbit consists of all matrices with a given Jordan canonical form; such an orbit is nilpotent if the Jordan form has only zeros on the diagonal. In this case, the nilpotent orbits are classified by partitions of n, given by the sizes of the Jordan blocks.) The closures of the nilpotent orbits are singular in general, and understanding their singularities is an important problem. - The classification of irreducible Weyl group representations is quite old. 148 pp. Englisch.
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 75,80
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. Print on Demand pp. 148 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam.
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
EUR 77,09
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. PRINT ON DEMAND pp. 148.
Vendeur : moluna, Greven, Allemagne
EUR 48,37
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. 1. The Subject Matter. Consider a complex semisimple Lie group G with Lie algebra g and Weyl group W. In this book, we present a geometric perspective on the following circle of ideas: polynomials The vertices of this graph are some of the most important .
Edité par Birkhäuser Boston, Birkhäuser Boston Okt 2011, 2011
ISBN 10 : 1461289106 ISBN 13 : 9781461289104
Langue: anglais
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 53,49
Quantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -1. The Subject Matter. Consider a complex semisimple Lie group G with Lie algebra g and Weyl group W. In this book, we present a geometric perspective on the following circle of ideas: polynomials The 'vertices' of this graph are some of the most important objects in representation theory. Each has a theory in its own right, and each has had its own independent historical development. - A nilpotent orbit is an orbit of the adjoint action of G on g which contains the zero element of g in its closure. (For the special linear group 2 G = SL(n,C), whose Lie algebra 9 is all n x n matrices with trace zero, an adjoint orbit consists of all matrices with a given Jordan canonical form; such an orbit is nilpotent if the Jordan form has only zeros on the diagonal. In this case, the nilpotent orbits are classified by partitions of n, given by the sizes of the Jordan blocks.) The closures of the nilpotent orbits are singular in general, and understanding their singularities is an important problem. - The classification of irreducible Weyl group representations is quite old.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 148 pp. Englisch.
Edité par Birkhäuser Boston Dez 1989, 1989
ISBN 10 : 0817634738 ISBN 13 : 9780817634735
Langue: anglais
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 117,69
Quantité disponible : 2 disponible(s)
Ajouter au panierBuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -1. The Subject Matter. Consider a complex semisimple Lie group G with Lie algebra g and Weyl group W. In this book, we present a geometric perspective on the following circle of ideas: polynomials The 'vertices' of this graph are some of the most important objects in representation theory. Each has a theory in its own right, and each has had its own independent historical development. - A nilpotent orbit is an orbit of the adjoint action of G on g which contains the zero element of g in its closure. (For the special linear group 2 G = SL(n,C), whose Lie algebra 9 is all n x n matrices with trace zero, an adjoint orbit consists of all matrices with a given Jordan canonical form; such an orbit is nilpotent if the Jordan form has only zeros on the diagonal. In this case, the nilpotent orbits are classified by partitions of n, given by the sizes of the Jordan blocks.) The closures of the nilpotent orbits are singular in general, and understanding their singularities is an important problem. - The classification of irreducible Weyl group representations is quite old. 148 pp. Englisch.
Vendeur : moluna, Greven, Allemagne
EUR 101,04
Quantité disponible : Plus de 20 disponibles
Ajouter au panierGebunden. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. 1. The Subject Matter. Consider a complex semisimple Lie group G with Lie algebra g and Weyl group W. In this book, we present a geometric perspective on the following circle of ideas: polynomials The vertices of this graph are some of the most important .
Vendeur : preigu, Osnabrück, Allemagne
EUR 104,90
Quantité disponible : 5 disponible(s)
Ajouter au panierBuch. Etat : Neu. Nilpotent Orbits, Primitive Ideals, and Characteristic Classes | A Geometric Perspective in Ring Theory | Walter Borho (u. a.) | Buch | viii | Englisch | 1989 | Birkhäuser | EAN 9780817634735 | Verantwortliche Person für die EU: Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.