Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 54,53
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Edité par Scholars' Press 2020-12, 2020
ISBN 10 : 6138945468 ISBN 13 : 9786138945468
Langue: anglais
Vendeur : Chiron Media, Wallingford, Royaume-Uni
EUR 53,91
Quantité disponible : 10 disponible(s)
Ajouter au panierPF. Etat : New.
Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 87,75
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New.
Vendeur : preigu, Osnabrück, Allemagne
EUR 51,75
Quantité disponible : 5 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Object Detection and Recognition Using Deep Learning | Multinational and Multilingual License Plate Recognition using Convolutional Neural Network | Mohammed Salemdeeb | Taschenbuch | Englisch | 2020 | Scholars' Press | EAN 9786138945468 | Verantwortliche Person für die EU: preigu GmbH & Co. KG, Lengericher Landstr. 19, 49078 Osnabrück, mail[at]preigu[dot]de | Anbieter: preigu.
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
EUR 119,94
Quantité disponible : 1 disponible(s)
Ajouter au panierpaperback. Etat : New. New. book.
Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
EUR 59,43
Quantité disponible : Plus de 20 disponibles
Ajouter au panierPAP. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
EUR 57,75
Quantité disponible : Plus de 20 disponibles
Ajouter au panierPAP. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Edité par Scholars' Press Dez 2020, 2020
ISBN 10 : 6138945468 ISBN 13 : 9786138945468
Langue: anglais
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 59,90
Quantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Many real-life machine learning applications are increasingly guiding into focus on object detection and recognition. The traditional computer vision approaches do not achieve the needed accuracies. Deep learning-based approaches have achieved high accuracy levels raising the interest in such approaches in recent years. License plate detection and recognition have been extensively studied over the decades. However, more accurate and national/language-independent approaches are still in the focus of today's demand. In this book, we discuss an approach to detect and recognize multinational and multilingual license plates. The approach has four modules and each module is implemented using convolutional neural network architecture. The YOLOv2 detector with ResNet core network is utilized for license plate detection module. Faster R-CNN detector with a custom core network architecture is used for character segmentation module. Low complexity convolutional neural network architectures for license plate classification and character recognition modules are analyzed and studied. Each module is trained and tested separately and used to build end-to-end license plate recognition system. 120 pp. Englisch.
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 92,95
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. Print on Demand.
Vendeur : moluna, Greven, Allemagne
EUR 49,17
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Salemdeeb MohammedMohammed Salemdeeb received B.Sc., 2004 and M.Sc., 2011 in Elect. Eng.Comm. Syst. from IUG, Palestine, and PhD in Electr. & Comm. Eng. from Kocaeli University, Turkey, 2020. His research interest fields are Signal &.
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
EUR 94,06
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. PRINT ON DEMAND.
Edité par Scholars' Press Dez 2020, 2020
ISBN 10 : 6138945468 ISBN 13 : 9786138945468
Langue: anglais
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 59,90
Quantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -Many real-life machine learning applications are increasingly guiding into focus on object detection and recognition. The traditional computer vision approaches do not achieve the needed accuracies. Deep learning-based approaches have achieved high accuracy levels raising the interest in such approaches in recent years. License plate detection and recognition have been extensively studied over the decades. However, more accurate and national/language-independent approaches are still in the focus of today's demand. In this book, we discuss an approach to detect and recognize multinational and multilingual license plates. The approach has four modules and each module is implemented using convolutional neural network architecture. The YOLOv2 detector with ResNet core network is utilized for license plate detection module. Faster R-CNN detector with a custom core network architecture is used for character segmentation module. Low complexity convolutional neural network architectures for license plate classification and character recognition modules are analyzed and studied. Each module is trained and tested separately and used to build end-to-end license plate recognition system.VDM Verlag, Dudweiler Landstraße 99, 66123 Saarbrücken 120 pp. Englisch.
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 60,62
Quantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Many real-life machine learning applications are increasingly guiding into focus on object detection and recognition. The traditional computer vision approaches do not achieve the needed accuracies. Deep learning-based approaches have achieved high accuracy levels raising the interest in such approaches in recent years. License plate detection and recognition have been extensively studied over the decades. However, more accurate and national/language-independent approaches are still in the focus of today's demand. In this book, we discuss an approach to detect and recognize multinational and multilingual license plates. The approach has four modules and each module is implemented using convolutional neural network architecture. The YOLOv2 detector with ResNet core network is utilized for license plate detection module. Faster R-CNN detector with a custom core network architecture is used for character segmentation module. Low complexity convolutional neural network architectures for license plate classification and character recognition modules are analyzed and studied. Each module is trained and tested separately and used to build end-to-end license plate recognition system.