Langue: anglais
Edité par Cambridge University Press, 2022
ISBN 10 : 1316518981 ISBN 13 : 9781316518984
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 48,58
Quantité disponible : 2 disponible(s)
Ajouter au panierEtat : New.
Langue: anglais
Edité par Cambridge University Press, 2022
ISBN 10 : 1316518981 ISBN 13 : 9781316518984
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
EUR 47,41
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Langue: anglais
Edité par Cambridge University Press, 2022
ISBN 10 : 1316518981 ISBN 13 : 9781316518984
Vendeur : California Books, Miami, FL, Etats-Unis
EUR 53,99
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Langue: anglais
Edité par Cambridge University Press, 2022
ISBN 10 : 1316518981 ISBN 13 : 9781316518984
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 51,93
Quantité disponible : 2 disponible(s)
Ajouter au panierEtat : As New. Unread book in perfect condition.
Langue: anglais
Edité par Cambridge University Press, 2022
ISBN 10 : 1316518981 ISBN 13 : 9781316518984
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
EUR 49,46
Quantité disponible : 1 disponible(s)
Ajouter au panierHRD. Etat : New. New Book. Shipped from UK. Established seller since 2000.
Langue: anglais
Edité par Cambridge University Press, Cambridge, 2022
ISBN 10 : 1316518981 ISBN 13 : 9781316518984
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
EUR 58,98
Quantité disponible : 1 disponible(s)
Ajouter au panierHardcover. Etat : new. Hardcover. Optimization techniques are at the core of data science, including data analysis and machine learning. An understanding of basic optimization techniques and their fundamental properties provides important grounding for students, researchers, and practitioners in these areas. This text covers the fundamentals of optimization algorithms in a compact, self-contained way, focusing on the techniques most relevant to data science. An introductory chapter demonstrates that many standard problems in data science can be formulated as optimization problems. Next, many fundamental methods in optimization are described and analyzed, including: gradient and accelerated gradient methods for unconstrained optimization of smooth (especially convex) functions; the stochastic gradient method, a workhorse algorithm in machine learning; the coordinate descent approach; several key algorithms for constrained optimization problems; algorithms for minimizing nonsmooth functions arising in data science; foundations of the analysis of nonsmooth functions and optimization duality; and the back-propagation approach, relevant to neural networks. Optimization techniques are at the core of data science. An understanding of the basic techniques and their fundamental properties provides important grounding for students, researchers, and practitioners. This compact, self-contained text covers the fundamentals of optimization algorithms, focusing on the techniques most relevant to data science. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Langue: anglais
Edité par Cambridge University Press, GB, 2022
ISBN 10 : 1316518981 ISBN 13 : 9781316518984
Vendeur : Rarewaves.com USA, London, LONDO, Royaume-Uni
EUR 59,99
Quantité disponible : 1 disponible(s)
Ajouter au panierHardback. Etat : New. Optimization techniques are at the core of data science, including data analysis and machine learning. An understanding of basic optimization techniques and their fundamental properties provides important grounding for students, researchers, and practitioners in these areas. This text covers the fundamentals of optimization algorithms in a compact, self-contained way, focusing on the techniques most relevant to data science. An introductory chapter demonstrates that many standard problems in data science can be formulated as optimization problems. Next, many fundamental methods in optimization are described and analyzed, including: gradient and accelerated gradient methods for unconstrained optimization of smooth (especially convex) functions; the stochastic gradient method, a workhorse algorithm in machine learning; the coordinate descent approach; several key algorithms for constrained optimization problems; algorithms for minimizing nonsmooth functions arising in data science; foundations of the analysis of nonsmooth functions and optimization duality; and the back-propagation approach, relevant to neural networks.
Langue: anglais
Edité par Cambridge University Press, 2022
ISBN 10 : 1316518981 ISBN 13 : 9781316518984
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 49,45
Quantité disponible : 2 disponible(s)
Ajouter au panierEtat : New.
Langue: anglais
Edité par Cambridge University Press, 2022
ISBN 10 : 1316518981 ISBN 13 : 9781316518984
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 52,90
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Langue: anglais
Edité par Cambridge University Press 2022-01-31, 2022
ISBN 10 : 1316518981 ISBN 13 : 9781316518984
Vendeur : Chiron Media, Wallingford, Royaume-Uni
EUR 48,94
Quantité disponible : 1 disponible(s)
Ajouter au panierHardcover. Etat : New.
Langue: anglais
Edité par Cambridge University Press, 2022
ISBN 10 : 1316518981 ISBN 13 : 9781316518984
Vendeur : Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande
EUR 59,38
Quantité disponible : 1 disponible(s)
Ajouter au panierEtat : New. 2022. New. Hardcover. . . . . .
Langue: anglais
Edité par Cambridge University Press, 2022
ISBN 10 : 1316518981 ISBN 13 : 9781316518984
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 55,80
Quantité disponible : 2 disponible(s)
Ajouter au panierEtat : As New. Unread book in perfect condition.
Langue: anglais
Edité par Cambridge University Press, 2022
ISBN 10 : 1316518981 ISBN 13 : 9781316518984
Vendeur : Kennys Bookstore, Olney, MD, Etats-Unis
EUR 72,96
Quantité disponible : 1 disponible(s)
Ajouter au panierEtat : New. 2022. New. Hardcover. . . . . . Books ship from the US and Ireland.
EUR 71,85
Quantité disponible : 2 disponible(s)
Ajouter au panierHardcover. Etat : Brand New. 227 pages. 9.25x6.25x0.75 inches. In Stock.
Langue: anglais
Edité par Cambridge University Press, 2022
ISBN 10 : 1316518981 ISBN 13 : 9781316518984
Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 80,46
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New.
Langue: anglais
Edité par Cambridge University Press, 2022
ISBN 10 : 1316518981 ISBN 13 : 9781316518984
Vendeur : Speedyhen, Hertfordshire, Royaume-Uni
EUR 44,92
Quantité disponible : 1 disponible(s)
Ajouter au panierEtat : NEW.
Langue: anglais
Edité par Cambridge University Pr., 2022
ISBN 10 : 1316518981 ISBN 13 : 9781316518984
Vendeur : moluna, Greven, Allemagne
EUR 57,22
Quantité disponible : 1 disponible(s)
Ajouter au panierGebunden. Etat : New. Optimization techniques are at the core of data science. An understanding of the basic techniques and their fundamental properties provides important grounding for students, researchers, and practitioners. This compact, self-contained text covers the fundam.
Langue: anglais
Edité par Cambridge University Press, 2022
ISBN 10 : 1316518981 ISBN 13 : 9781316518984
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 58,41
Quantité disponible : 2 disponible(s)
Ajouter au panierBuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Optimization techniques are at the core of data science, including data analysis and machine learning. An understanding of basic optimization techniques and their fundamental properties provides important grounding for students, researchers, and practitioners in these areas. This text covers the fundamentals of optimization algorithms in a compact, self-contained way, focusing on the techniques most relevant to data science. An introductory chapter demonstrates that many standard problems in data science can be formulated as optimization problems. Next, many fundamental methods in optimization are described and analyzed, including: gradient and accelerated gradient methods for unconstrained optimization of smooth (especially convex) functions; the stochastic gradient method, a workhorse algorithm in machine learning; the coordinate descent approach; several key algorithms for constrained optimization problems; algorithms for minimizing nonsmooth functions arising in data science; foundations of the analysis of nonsmooth functions and optimization duality; and the back-propagation approach, relevant to neural networks.
Langue: anglais
Edité par Cambridge University Press, GB, 2022
ISBN 10 : 1316518981 ISBN 13 : 9781316518984
Vendeur : Rarewaves.com UK, London, Royaume-Uni
EUR 54,99
Quantité disponible : 1 disponible(s)
Ajouter au panierHardback. Etat : New. Optimization techniques are at the core of data science, including data analysis and machine learning. An understanding of basic optimization techniques and their fundamental properties provides important grounding for students, researchers, and practitioners in these areas. This text covers the fundamentals of optimization algorithms in a compact, self-contained way, focusing on the techniques most relevant to data science. An introductory chapter demonstrates that many standard problems in data science can be formulated as optimization problems. Next, many fundamental methods in optimization are described and analyzed, including: gradient and accelerated gradient methods for unconstrained optimization of smooth (especially convex) functions; the stochastic gradient method, a workhorse algorithm in machine learning; the coordinate descent approach; several key algorithms for constrained optimization problems; algorithms for minimizing nonsmooth functions arising in data science; foundations of the analysis of nonsmooth functions and optimization duality; and the back-propagation approach, relevant to neural networks.
Langue: anglais
Edité par Cambridge University Press, 2022
ISBN 10 : 1316518981 ISBN 13 : 9781316518984
Vendeur : preigu, Osnabrück, Allemagne
EUR 64,25
Quantité disponible : 1 disponible(s)
Ajouter au panierBuch. Etat : Neu. Optimization for Data Analysis | Stephen J. Wright (u. a.) | Buch | Gebunden | Englisch | 2022 | Cambridge University Press | EAN 9781316518984 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu.
Vendeur : Revaluation Books, Exeter, Royaume-Uni
EUR 48,16
Quantité disponible : 1 disponible(s)
Ajouter au panierHardcover. Etat : Brand New. 227 pages. 9.25x6.25x0.75 inches. In Stock. This item is printed on demand.
Langue: anglais
Edité par Cambridge University Press, 2022
ISBN 10 : 1316518981 ISBN 13 : 9781316518984
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
EUR 52,78
Quantité disponible : Plus de 20 disponibles
Ajouter au panierHardback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days.
Langue: anglais
Edité par Cambridge University Press, 2022
ISBN 10 : 1316518981 ISBN 13 : 9781316518984
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 77,71
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. Print on Demand.
Langue: anglais
Edité par Cambridge University Press, 2022
ISBN 10 : 1316518981 ISBN 13 : 9781316518984
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
EUR 79,49
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. PRINT ON DEMAND.
Langue: anglais
Edité par Cambridge University Press, Cambridge, 2022
ISBN 10 : 1316518981 ISBN 13 : 9781316518984
Vendeur : CitiRetail, Stevenage, Royaume-Uni
EUR 59,84
Quantité disponible : 1 disponible(s)
Ajouter au panierHardcover. Etat : new. Hardcover. Optimization techniques are at the core of data science, including data analysis and machine learning. An understanding of basic optimization techniques and their fundamental properties provides important grounding for students, researchers, and practitioners in these areas. This text covers the fundamentals of optimization algorithms in a compact, self-contained way, focusing on the techniques most relevant to data science. An introductory chapter demonstrates that many standard problems in data science can be formulated as optimization problems. Next, many fundamental methods in optimization are described and analyzed, including: gradient and accelerated gradient methods for unconstrained optimization of smooth (especially convex) functions; the stochastic gradient method, a workhorse algorithm in machine learning; the coordinate descent approach; several key algorithms for constrained optimization problems; algorithms for minimizing nonsmooth functions arising in data science; foundations of the analysis of nonsmooth functions and optimization duality; and the back-propagation approach, relevant to neural networks. Optimization techniques are at the core of data science. An understanding of the basic techniques and their fundamental properties provides important grounding for students, researchers, and practitioners. This compact, self-contained text covers the fundamentals of optimization algorithms, focusing on the techniques most relevant to data science. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Langue: anglais
Edité par Cambridge University Press, Cambridge, 2022
ISBN 10 : 1316518981 ISBN 13 : 9781316518984
Vendeur : AussieBookSeller, Truganina, VIC, Australie
EUR 85,86
Quantité disponible : 1 disponible(s)
Ajouter au panierHardcover. Etat : new. Hardcover. Optimization techniques are at the core of data science, including data analysis and machine learning. An understanding of basic optimization techniques and their fundamental properties provides important grounding for students, researchers, and practitioners in these areas. This text covers the fundamentals of optimization algorithms in a compact, self-contained way, focusing on the techniques most relevant to data science. An introductory chapter demonstrates that many standard problems in data science can be formulated as optimization problems. Next, many fundamental methods in optimization are described and analyzed, including: gradient and accelerated gradient methods for unconstrained optimization of smooth (especially convex) functions; the stochastic gradient method, a workhorse algorithm in machine learning; the coordinate descent approach; several key algorithms for constrained optimization problems; algorithms for minimizing nonsmooth functions arising in data science; foundations of the analysis of nonsmooth functions and optimization duality; and the back-propagation approach, relevant to neural networks. Optimization techniques are at the core of data science. An understanding of the basic techniques and their fundamental properties provides important grounding for students, researchers, and practitioners. This compact, self-contained text covers the fundamentals of optimization algorithms, focusing on the techniques most relevant to data science. This item is printed on demand. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.