Edité par Cambridge University Press, 2007
ISBN 10 : 0521873371 ISBN 13 : 9780521873376
Langue: anglais
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 117,06
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Edité par Cambridge University Press, 2007
ISBN 10 : 0521873371 ISBN 13 : 9780521873376
Langue: anglais
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 136,76
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Edité par Cambridge University Press, 2007
ISBN 10 : 0521873371 ISBN 13 : 9780521873376
Langue: anglais
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 124,78
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Edité par Cambridge University Press, 2007
ISBN 10 : 0521873371 ISBN 13 : 9780521873376
Langue: anglais
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 142,39
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Edité par Cambridge University Press (2008), Cambridge, 2008
Vendeur : Expatriate Bookshop of Denmark, Svendborg, Danemark
EUR 78,82
Quantité disponible : 1 disponible(s)
Ajouter au panierorig.boards Minor rubbing. An ink mark to bottom page-edge. VG. 24x15cm, xvii,497 pp., Series: Cambridge Aerospace Series, 21. "This book illustrates how potential flows enter into the general theory of motions of viscous and viscoelastic fluids. Traditionally, the theory of potential flow is presented as a subject called 'potential flow of an inviscid fluid'; when the fluid is incompressible these fluids are, curiously, said to be 'perfect' or 'ideal'. This type of presentation is widespread; it can be found in every book on fluid mechanics, but it is flawed. It is never necessary and typically not useful to put the viscosity of fluids in potential (irrotational) flow to zero. The dimensionless description of potential flows of fluids with a nonzero viscosity depends on the Reynolds number, and the theory of potential flow of an inviscid fluid can be said to rise as the Reynolds number tends to infinity. The theory given here can be described as the theory of potential flows at finite and even small Reynolds numbers" - publisher's description. Minor rubbing. An ink mark to bottom page-edge. VG.