EUR 24,26
Quantité disponible : 1 disponible(s)
Ajouter au panierpaperback. Etat : Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority!
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 28,10
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : BargainBookStores, Grand Rapids, MI, Etats-Unis
EUR 30,44
Quantité disponible : 5 disponible(s)
Ajouter au panierPaperback or Softback. Etat : New. Practical Dataops: Delivering Agile Data Science at Scale. Book.
Vendeur : Lakeside Books, Benton Harbor, MI, Etats-Unis
EUR 27,06
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. Brand New! Not Overstocks or Low Quality Book Club Editions! Direct From the Publisher! We're not a giant, faceless warehouse organization! We're a small town bookstore that loves books and loves it's customers! Buy from Lakeside Books!
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
EUR 29,74
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : California Books, Miami, FL, Etats-Unis
EUR 33,55
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 31,79
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Vendeur : Better World Books Ltd, Dunfermline, Royaume-Uni
EUR 27,78
Quantité disponible : 1 disponible(s)
Ajouter au panierEtat : Very Good. Ships from the UK. Former library book; may include library markings. Used book that is in excellent condition. May show signs of wear or have minor defects.
Edité par Apress, 2019
Vendeur : BoundlessBookstore, Wallingford, Royaume-Uni
EUR 18,86
Quantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : Good. Good condition paperback with minimal wear. Contents are highlights.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 33,24
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 40,42
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Vendeur : Chiron Media, Wallingford, Royaume-Uni
EUR 37,84
Quantité disponible : 10 disponible(s)
Ajouter au panierPF. Etat : New.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 39,02
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Vendeur : GoldBooks, Denver, CO, Etats-Unis
EUR 56,74
Quantité disponible : 1 disponible(s)
Ajouter au panierEtat : new.
Vendeur : Revaluation Books, Exeter, Royaume-Uni
EUR 46,65
Quantité disponible : 2 disponible(s)
Ajouter au panierPaperback. Etat : Brand New. 303 pages. 9.25x6.10x0.94 inches. In Stock.
EUR 42,70
Quantité disponible : 5 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Practical DataOps | Delivering Agile Data Science at Scale | Harvinder Atwal | Taschenbuch | xxviii | Englisch | 2019 | Apress | EAN 9781484251034 | Verantwortliche Person für die EU: APress in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 50,08
Quantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Gain a practical introduction to DataOps, a new discipline for delivering data science at scale inspired by practices at companies such as Facebook, Uber, LinkedIn, Twitter, and eBay. Organizations need more than the latest AI algorithms, hottest tools, and best people to turn data into insight-driven action and useful analytical data products. Processes and thinking employed to manage and use data in the 20th century are a bottleneck for working effectively with the variety of data and advanced analytical use cases that organizations have today. This book provides the approach and methods to ensure continuous rapid use of data to create analytical data products and steer decision making.Practical DataOps shows you how to optimize the data supply chain from diverse raw data sources to the final data product, whether the goal is a machine learning model or other data-orientated output. The book provides an approach to eliminate wasted effort and improve collaboration between data producers, data consumers, and the rest of the organization through the adoption of lean thinking and agile software development principles.This book helps you to improve the speed and accuracy of analytical application development through data management and DevOps practices that securely expand data access, and rapidly increase the number of reproducible data products through automation, testing, and integration. The book also shows how to collect feedback and monitor performance to manage and continuously improve your processes and output.What You Will LearnDevelop a data strategy for your organization to help it reach its long-term goalsRecognize and eliminate barriers to delivering data to users at scaleWork on the right things for the right stakeholders through agile collaborationCreate trust in data via rigorous testing and effective data managementBuild a culture of learning and continuous improvement through monitoring deployments and measuring outcomesCreate cross-functional self-organizing teams focused on goals not reporting linesBuild robust, trustworthy, data pipelines in support of AI, machine learning, and other analytical data productsWho This Book Is ForData science and advanced analytics experts, CIOs, CDOs (chief data officers), chief analytics officers, business analysts, business team leaders, and IT professionals (data engineers, developers, architects, and DBAs) supporting data teams who want to dramatically increase the value their organization derives from data. The book is ideal for data professionals who want to overcome challenges of long delivery time, poor data quality, high maintenance costs, and scaling difficulties in getting data science output and machine learning into customer-facing production.