Vendeur : Anybook.com, Lincoln, Royaume-Uni
EUR 75,07
Quantité disponible : 1 disponible(s)
Ajouter au panierEtat : Fair. This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In fair condition, suitable as a study copy. No dust jacket. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,1000grams, ISBN:9027715734.
Vendeur : MB Books, Derbyshire, Royaume-Uni
EUR 79,96
Quantité disponible : 1 disponible(s)
Ajouter au panierHardcover. Etat : Fair. No Jacket. Condition : Internally clean, chipped cover. Former-university library copy with associated library stamps etc. Hard cover , no jacket. 553pp. No highlighting or annotations to text. Covered in a library laminate which has chipped. Photos on request.
EUR 164
Quantité disponible : 1 disponible(s)
Ajouter au panier22,5 x 15,5 cm. Etat : Gut. Synthese Library 169. VIII, 555 Pages Innen sauberer, guter Zustand. Hardcover, Pappeinband, mit den üblichen Bibliotheks-Markierungen, Stempeln und Einträgen, innen wie außen, siehe Bilder. (Evtl. auch Kleber- und/oder Etikettenreste, sowie -abdrücke durch abgelöste Bibliotheksschilder). Einband mit leichten Gebrauchsspuren. Englische Sprache - Original Hardboard with Library label. Inside with Library stamps, in good condition. Cover hardly used. English Language B11-02-01Z|S31 Sprache: Englisch Gewicht in Gramm: 885.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 205,92
Quantité disponible : 15 disponible(s)
Ajouter au panierEtat : New.
Vendeur : Grand Eagle Retail, Bensenville, IL, Etats-Unis
Edition originale
EUR 208,27
Quantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : new. Paperback. "Necessity is the mother of invention. " Part I: What is in this book - details. There are several different types of formal proof procedures that logicians have invented. The ones we consider are: 1) tableau systems, 2) Gentzen sequent calculi, 3) natural deduction systems, and 4) axiom systems. We present proof procedures of each of these types for the most common normal modal logics: S5, S4, B, T, D, K, K4, D4, KB, DB, and also G, the logic that has become important in applications of modal logic to the proof theory of Peano arithmetic. Further, we present a similar variety of proof procedures for an even larger number of regular, non-normal modal logics (many introduced by Lemmon). We also consider some quasi-regular logics, including S2 and S3. Virtually all of these proof procedures are studied in both propositional and first-order versions (generally with and without the Barcan formula). Finally, we present the full variety of proof methods for Intuitionistic logic (and of course Classical logic too). We actually give two quite different kinds of tableau systems for the logics we consider, two kinds of Gentzen sequent calculi, and two kinds of natural deduction systems. Each of the two tableau systems has its own uses; each provides us with different information about the logics involved. They complement each other more than they overlap. Of the two Gentzen systems, one is of the conventional sort, common in the literature. The ones we consider are: 1) tableau systems, 2) Gentzen sequent calculi, 3) natural deduction systems, and 4) axiom systems. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
EUR 204,80
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
EUR 205,06
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 216,50
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 216,50
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 216,49
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 242,25
Quantité disponible : 15 disponible(s)
Ajouter au panierEtat : As New. Unread book in perfect condition.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 247,29
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
EUR 187,40
Quantité disponible : 5 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Proof Methods for Modal and Intuitionistic Logics | M. Fitting | Taschenbuch | viii | Englisch | 2010 | Springer | EAN 9789048183814 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Edité par Springer Netherlands, Springer Netherlands Apr 1983, 1983
ISBN 10 : 9027715734 ISBN 13 : 9789027715739
Langue: anglais
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 213,99
Quantité disponible : 2 disponible(s)
Ajouter au panierBuch. Etat : Neu. Neuware -'Necessity is the mother of invention. ' Part I: What is in this book - details. There are several different types of formal proof procedures that logicians have invented. The ones we consider are: 1) tableau systems, 2) Gentzen sequent calculi, 3) natural deduction systems, and 4) axiom systems. We present proof procedures of each of these types for the most common normal modal logics: S5, S4, B, T, D, K, K4, D4, KB, DB, and also G, the logic that has become important in applications of modal logic to the proof theory of Peano arithmetic. Further, we present a similar variety of proof procedures for an even larger number of regular, non-normal modal logics (many introduced by Lemmon). We also consider some quasi-regular logics, including S2 and S3. Virtually all of these proof procedures are studied in both propositional and first-order versions (generally with and without the Barcan formula). Finally, we present the full variety of proof methods for Intuitionistic logic (and of course Classical logic too). We actually give two quite different kinds of tableau systems for the logics we consider, two kinds of Gentzen sequent calculi, and two kinds of natural deduction systems. Each of the two tableau systems has its own uses; each provides us with different information about the logics involved. They complement each other more than they overlap. Of the two Gentzen systems, one is of the conventional sort, common in the literature.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 568 pp. Englisch.
Edité par Springer Netherlands, Springer Netherlands, 2010
ISBN 10 : 9048183812 ISBN 13 : 9789048183814
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 223,11
Quantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - 'Necessity is the mother of invention. ' Part I: What is in this book - details. There are several different types of formal proof procedures that logicians have invented. The ones we consider are: 1) tableau systems, 2) Gentzen sequent calculi, 3) natural deduction systems, and 4) axiom systems. We present proof procedures of each of these types for the most common normal modal logics: S5, S4, B, T, D, K, K4, D4, KB, DB, and also G, the logic that has become important in applications of modal logic to the proof theory of Peano arithmetic. Further, we present a similar variety of proof procedures for an even larger number of regular, non-normal modal logics (many introduced by Lemmon). We also consider some quasi-regular logics, including S2 and S3. Virtually all of these proof procedures are studied in both propositional and first-order versions (generally with and without the Barcan formula). Finally, we present the full variety of proof methods for Intuitionistic logic (and of course Classical logic too). We actually give two quite different kinds of tableau systems for the logics we consider, two kinds of Gentzen sequent calculi, and two kinds of natural deduction systems. Each of the two tableau systems has its own uses; each provides us with different information about the logics involved. They complement each other more than they overlap. Of the two Gentzen systems, one is of the conventional sort, common in the literature.
Edité par Springer Netherlands, Springer Netherlands, 1983
ISBN 10 : 9027715734 ISBN 13 : 9789027715739
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 225,03
Quantité disponible : 1 disponible(s)
Ajouter au panierBuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - 'Necessity is the mother of invention. ' Part I: What is in this book - details. There are several different types of formal proof procedures that logicians have invented. The ones we consider are: 1) tableau systems, 2) Gentzen sequent calculi, 3) natural deduction systems, and 4) axiom systems. We present proof procedures of each of these types for the most common normal modal logics: S5, S4, B, T, D, K, K4, D4, KB, DB, and also G, the logic that has become important in applications of modal logic to the proof theory of Peano arithmetic. Further, we present a similar variety of proof procedures for an even larger number of regular, non-normal modal logics (many introduced by Lemmon). We also consider some quasi-regular logics, including S2 and S3. Virtually all of these proof procedures are studied in both propositional and first-order versions (generally with and without the Barcan formula). Finally, we present the full variety of proof methods for Intuitionistic logic (and of course Classical logic too). We actually give two quite different kinds of tableau systems for the logics we consider, two kinds of Gentzen sequent calculi, and two kinds of natural deduction systems. Each of the two tableau systems has its own uses; each provides us with different information about the logics involved. They complement each other more than they overlap. Of the two Gentzen systems, one is of the conventional sort, common in the literature.
Vendeur : AussieBookSeller, Truganina, VIC, Australie
Edition originale
EUR 293,94
Quantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : new. Paperback. "Necessity is the mother of invention. " Part I: What is in this book - details. There are several different types of formal proof procedures that logicians have invented. The ones we consider are: 1) tableau systems, 2) Gentzen sequent calculi, 3) natural deduction systems, and 4) axiom systems. We present proof procedures of each of these types for the most common normal modal logics: S5, S4, B, T, D, K, K4, D4, KB, DB, and also G, the logic that has become important in applications of modal logic to the proof theory of Peano arithmetic. Further, we present a similar variety of proof procedures for an even larger number of regular, non-normal modal logics (many introduced by Lemmon). We also consider some quasi-regular logics, including S2 and S3. Virtually all of these proof procedures are studied in both propositional and first-order versions (generally with and without the Barcan formula). Finally, we present the full variety of proof methods for Intuitionistic logic (and of course Classical logic too). We actually give two quite different kinds of tableau systems for the logics we consider, two kinds of Gentzen sequent calculi, and two kinds of natural deduction systems. Each of the two tableau systems has its own uses; each provides us with different information about the logics involved. They complement each other more than they overlap. Of the two Gentzen systems, one is of the conventional sort, common in the literature. The ones we consider are: 1) tableau systems, 2) Gentzen sequent calculi, 3) natural deduction systems, and 4) axiom systems. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Edité par D. Reidel Publishing Company 1983, 1983
Vendeur : Hard to Find Books NZ (Internet) Ltd., Dunedin, OTAGO, Nouvelle-Zélande
Membre d'association : IOBA
Edition originale
EUR 60,78
Quantité disponible : 1 disponible(s)
Ajouter au panierFirst edition. Super 8vo, pp. viii + 553; blue heavy card boards, spine lettered in gilt; VG+ (sl scuffing & soiling to boards; light bruising to spine & board edges & extrems; light tanning & soiling to pg edges; sl soiling to eps, prelims & terminals; prev bookseller's sticker to front pastedown; prev ownership inscription in blue ink to ffep & rear pastedown); in d/w, VG (light scuffing & soiling; light bruising & creasing to edges & extrems; light tanning & foxing).
Edité par Reidel, Boston 1983, 1983
Vendeur : Antiquariat Thomas & Reinhard, Recklinghausen, NRW, Allemagne
EUR 72
Quantité disponible : 1 disponible(s)
Ajouter au panierBibl.Ex., keine Markierungen-Unterstreichungen-Anmerkungen im Text, Format groß 8°, 555 Seiten, LEINENAUSGABE, , entfernter Rückenschild, goldgeprägter Rückentitel, Stempel Rückseite Titelblatt, sehr gut erhaltenes Buch. Shipping to abroad insured with tracking number.
Vendeur : moluna, Greven, Allemagne
EUR 180,07
Quantité disponible : Plus de 20 disponibles
Ajouter au panierGebunden. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Necessity is the mother of invention. Part I: What is in this book - details. There are several different types of formal proof procedures that logicians have invented. The ones we consider are: 1) tableau systems, 2) Gentzen sequent calculi, 3) natural .
Vendeur : moluna, Greven, Allemagne
EUR 180,07
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Necessity is the mother of invention. Part I: What is in this book - details. There are several different types of formal proof procedures that logicians have invented. The ones we consider are: 1) tableau systems, 2) Gentzen sequent calculi, 3) natural .
Edité par Springer Netherlands Apr 1983, 1983
ISBN 10 : 9027715734 ISBN 13 : 9789027715739
Langue: anglais
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 213,99
Quantité disponible : 2 disponible(s)
Ajouter au panierBuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -'Necessity is the mother of invention. ' Part I: What is in this book - details. There are several different types of formal proof procedures that logicians have invented. The ones we consider are: 1) tableau systems, 2) Gentzen sequent calculi, 3) natural deduction systems, and 4) axiom systems. We present proof procedures of each of these types for the most common normal modal logics: S5, S4, B, T, D, K, K4, D4, KB, DB, and also G, the logic that has become important in applications of modal logic to the proof theory of Peano arithmetic. Further, we present a similar variety of proof procedures for an even larger number of regular, non-normal modal logics (many introduced by Lemmon). We also consider some quasi-regular logics, including S2 and S3. Virtually all of these proof procedures are studied in both propositional and first-order versions (generally with and without the Barcan formula). Finally, we present the full variety of proof methods for Intuitionistic logic (and of course Classical logic too). We actually give two quite different kinds of tableau systems for the logics we consider, two kinds of Gentzen sequent calculi, and two kinds of natural deduction systems. Each of the two tableau systems has its own uses; each provides us with different information about the logics involved. They complement each other more than they overlap. Of the two Gentzen systems, one is of the conventional sort, common in the literature. 568 pp. Englisch.
Edité par Springer Netherlands, Springer Netherlands Dez 2010, 2010
ISBN 10 : 9048183812 ISBN 13 : 9789048183814
Langue: anglais
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 213,99
Quantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -'Necessity is the mother of invention. ' Part I: What is in this book - details. There are several different types of formal proof procedures that logicians have invented. The ones we consider are: 1) tableau systems, 2) Gentzen sequent calculi, 3) natural deduction systems, and 4) axiom systems. We present proof procedures of each of these types for the most common normal modal logics: S5, S4, B, T, D, K, K4, D4, KB, DB, and also G, the logic that has become important in applications of modal logic to the proof theory of Peano arithmetic. Further, we present a similar variety of proof procedures for an even larger number of regular, non-normal modal logics (many introduced by Lemmon). We also consider some quasi-regular logics, including S2 and S3. Virtually all of these proof procedures are studied in both propositional and first-order versions (generally with and without the Barcan formula). Finally, we present the full variety of proof methods for Intuitionistic logic (and of course Classical logic too). We actually give two quite different kinds of tableau systems for the logics we consider, two kinds of Gentzen sequent calculi, and two kinds of natural deduction systems. Each of the two tableau systems has its own uses; each provides us with different information about the logics involved. They complement each other more than they overlap. Of the two Gentzen systems, one is of the conventional sort, common in the literature. 568 pp. Englisch.
Vendeur : preigu, Osnabrück, Allemagne
EUR 187,40
Quantité disponible : 5 disponible(s)
Ajouter au panierBuch. Etat : Neu. Proof Methods for Modal and Intuitionistic Logics | M. Fitting | Buch | viii | Englisch | 1983 | Springer Netherland | EAN 9789027715739 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.
Edité par Springer Netherlands, Springer Netherlands Dez 2010, 2010
ISBN 10 : 9048183812 ISBN 13 : 9789048183814
Langue: anglais
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 213,99
Quantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -'Necessity is the mother of invention. ' Part I: What is in this book - details. There are several different types of formal proof procedures that logicians have invented. The ones we consider are: 1) tableau systems, 2) Gentzen sequent calculi, 3) natural deduction systems, and 4) axiom systems. We present proof procedures of each of these types for the most common normal modal logics: S5, S4, B, T, D, K, K4, D4, KB, DB, and also G, the logic that has become important in applications of modal logic to the proof theory of Peano arithmetic. Further, we present a similar variety of proof procedures for an even larger number of regular, non-normal modal logics (many introduced by Lemmon). We also consider some quasi-regular logics, including S2 and S3. Virtually all of these proof procedures are studied in both propositional and first-order versions (generally with and without the Barcan formula). Finally, we present the full variety of proof methods for Intuitionistic logic (and of course Classical logic too). We actually give two quite different kinds of tableau systems for the logics we consider, two kinds of Gentzen sequent calculi, and two kinds of natural deduction systems. Each of the two tableau systems has its own uses; each provides us with different information about the logics involved. They complement each other more than they overlap. Of the two Gentzen systems, one is of the conventional sort, common in the literature.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 568 pp. Englisch.