Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 14,81
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New.
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 12,01
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New.
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
EUR 13,45
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New.
Vendeur : California Books, Miami, FL, Etats-Unis
EUR 58,38
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Rarewaves USA, OSWEGO, IL, Etats-Unis
EUR 68,66
Quantité disponible : Plus de 20 disponibles
Ajouter au panierPaperback. Etat : New.
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 57,13
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Edité par Academic Enclave 3/1/2025, 2025
ISBN 10 : 9348642510 ISBN 13 : 9789348642516
Langue: anglais
Vendeur : BargainBookStores, Grand Rapids, MI, Etats-Unis
EUR 76,42
Quantité disponible : 5 disponible(s)
Ajouter au panierPaperback or Softback. Etat : New. Regression Analysis with Classical and Statistical Learning Methods: An Easy Guide for Data Scientists, Business Analysts and Engineers using Python. Book.
Vendeur : Rarewaves.com USA, London, LONDO, Royaume-Uni
EUR 81,80
Quantité disponible : Plus de 20 disponibles
Ajouter au panierPaperback. Etat : New.
Vendeur : Rarewaves USA United, OSWEGO, IL, Etats-Unis
EUR 70,40
Quantité disponible : Plus de 20 disponibles
Ajouter au panierPaperback. Etat : New.
Vendeur : Rarewaves.com UK, London, Royaume-Uni
EUR 76,55
Quantité disponible : Plus de 20 disponibles
Ajouter au panierPaperback. Etat : New.
Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
EUR 63,86
Quantité disponible : Plus de 20 disponibles
Ajouter au panierPAP. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
EUR 58,71
Quantité disponible : Plus de 20 disponibles
Ajouter au panierPAP. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Edité par Academic Enclave Mär 2025, 2025
ISBN 10 : 9348642510 ISBN 13 : 9789348642516
Langue: anglais
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 76,30
Quantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Regression is a powerful technique in data analysis for modeling relationships between variables, making it crucial for prediction, decision-making, and pattern recognition. This book offers an accessible introduction to regression modeling, tailored for postgraduate students in fields such as data science, engineering, statistics, mathematics, business, and the sciences. It simplifies complex mathematical concepts and emphasizes real-world applications, complemented by coding examples to reinforce key concepts.The book covers classical regression methods including simple and multiple linear regression, polynomial regression, and logistic regression. It also addresses regression diagnostics, such as model evaluation, outlier detection, and assessment of model assumptions. By integrating classical methods with modern machine learning techniques, it offers a unique perspective. Machine learning techniques like support vector regression, decision trees, and artificial neural networks (ANN) for regression tasks are introduced, demonstrating their complementarity to classical methods through practical examples. The book also explores advanced methods such as Ridge, Lasso, Elastic Net, Principal Component Regression, and Generalized Linear Models (GLMs). These techniques are demonstrated using Python libraries like Statsmodels and Scikit-learn, enabling students to engage in practical learning. 502 pp. Englisch.
Vendeur : CitiRetail, Stevenage, Royaume-Uni
EUR 64,82
Quantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : new. Paperback. Regression is a powerful technique in data analysis for modeling relationships between variables, making it crucial for prediction, decision-making, and pattern recognition. This book offers an accessible introduction to regression modeling, tailored for postgraduate students in fields such as data science, engineering, statistics, mathematics, business, and the sciences. It simplifies complex mathematical concepts and emphasizes real-world applications, complemented by coding examples to reinforce key concepts.The book covers classical regression methods including simple and multiple linear regression, polynomial regression, and logistic regression. It also addresses regression diagnostics, such as model evaluation, outlier detection, and assessment of model assumptions. By integrating classical methods with modern machine learning techniques, it offers a unique perspective. Machine learning techniques like support vector regression, decision trees, and artificial neural networks (ANN) for regression tasks are introduced, demonstrating their complementarity to classical methods through practical examples. The book also explores advanced methods such as Ridge, Lasso, Elastic Net, Principal Component Regression, and Generalized Linear Models (GLMs). These techniques are demonstrated using Python libraries like Statsmodels and Scikit-learn, enabling students to engage in practical learning. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Edité par Academic Enclave Mär 2025, 2025
ISBN 10 : 9348642510 ISBN 13 : 9789348642516
Langue: anglais
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 76,30
Quantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -Regression is a powerful technique in data analysis for modeling relationships between variables, making it crucial for prediction, decision-making, and pattern recognition. This book offers an accessible introduction to regression modeling, tailored for postgraduate students in fields such as data science, engineering, statistics, mathematics, business, and the sciences. It simplifies complex mathematical concepts and emphasizes real-world applications, complemented by coding examples to reinforce key concepts.The book covers classical regression methods including simple and multiple linear regression, polynomial regression, and logistic regression. It also addresses regression diagnostics, such as model evaluation, outlier detection, and assessment of model assumptions. By integrating classical methods with modern machine learning techniques, it offers a unique perspective. Machine learning techniques like support vector regression, decision trees, and artificial neural networks (ANN) for regression tasks are introduced, demonstrating their complementarity to classical methods through practical examples. The book also explores advanced methods such as Ridge, Lasso, Elastic Net, Principal Component Regression, and Generalized Linear Models (GLMs). These techniques are demonstrated using Python libraries like Statsmodels and Scikit-learn, enabling students to engage in practical learning.Libri GmbH, Europaallee 1, 36244 Bad Hersfeld 502 pp. Englisch.
Vendeur : preigu, Osnabrück, Allemagne
EUR 68,65
Quantité disponible : 5 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Regression Analysis with Classical and Statistical Learning Methods | An Easy Guide for Data Scientists, Business Analysts and Engineers using Python | K C James | Taschenbuch | Englisch | 2025 | Academic Enclave | EAN 9789348642516 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu Print on Demand.
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 81,15
Quantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Regression is a powerful technique in data analysis for modeling relationships between variables, making it crucial for prediction, decision-making, and pattern recognition. This book offers an accessible introduction to regression modeling, tailored for postgraduate students in fields such as data science, engineering, statistics, mathematics, business, and the sciences. It simplifies complex mathematical concepts and emphasizes real-world applications, complemented by coding examples to reinforce key concepts.The book covers classical regression methods including simple and multiple linear regression, polynomial regression, and logistic regression. It also addresses regression diagnostics, such as model evaluation, outlier detection, and assessment of model assumptions. By integrating classical methods with modern machine learning techniques, it offers a unique perspective. Machine learning techniques like support vector regression, decision trees, and artificial neural networks (ANN) for regression tasks are introduced, demonstrating their complementarity to classical methods through practical examples. The book also explores advanced methods such as Ridge, Lasso, Elastic Net, Principal Component Regression, and Generalized Linear Models (GLMs). These techniques are demonstrated using Python libraries like Statsmodels and Scikit-learn, enabling students to engage in practical learning.