Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 26,79
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 34,32
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Chiron Media, Wallingford, Royaume-Uni
EUR 22,93
Quantité disponible : 10 disponible(s)
Ajouter au panierPF. Etat : New.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 25,86
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 28,86
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
EUR 48,11
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : California Books, Miami, FL, Etats-Unis
EUR 54,86
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : BargainBookStores, Grand Rapids, MI, Etats-Unis
EUR 76,62
Quantité disponible : 5 disponible(s)
Ajouter au panierPaperback or Softback. Etat : New. Regularized System Identification: Learning Dynamic Models from Data. Book.
Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 75,16
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New.
Edité par Springer International Publishing, Springer International Publishing, 2022
ISBN 10 : 3030958620 ISBN 13 : 9783030958626
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 42,79
Quantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This open access book provides a comprehensive treatment of recent developments in kernel-based identification that are of interest to anyone engaged in learning dynamic systems from data. The reader is led step by step into understanding of a novel paradigm that leverages the power of machine learning without losing sight of the system-theoretical principles of black-box identification. The authors' reformulation of the identification problem in the light of regularization theory not only offers new insight on classical questions, but paves the way to new and powerful algorithms for a variety of linear and nonlinear problems. Regression methods such as regularization networks and support vector machines are the basis of techniques that extend the function-estimation problem to the estimation of dynamic models. Many examples, also from real-world applications, illustrate the comparative advantages of the new nonparametric approach with respect to classic parametric prediction error methods.The challenges it addresses lie at the intersection of several disciplines soRegularized System Identificationwill be of interest to a variety of researchers and practitioners in the areas of control systems, machine learning, statistics, and data science.This is an open access book.
Edité par Springer International Publishing, 2022
ISBN 10 : 3030958590 ISBN 13 : 9783030958596
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 53,49
Quantité disponible : 1 disponible(s)
Ajouter au panierBuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This open access book provides a comprehensive treatment of recent developments in kernel-based identification that are of interest to anyone engaged in learning dynamic systems from data. The reader is led step by step into understanding of a novel paradigm that leverages the power of machine learning without losing sight of the system-theoretical principles of black-box identification. The authors' reformulation of the identification problem in the light of regularization theory not only offers new insight on classical questions, but paves the way to new and powerful algorithms for a variety of linear and nonlinear problems. Regression methods such as regularization networks and support vector machines are the basis of techniques that extend the function-estimation problem to the estimation of dynamic models. Many examples, also from real-world applications, illustrate the comparative advantages of the new nonparametric approach with respect to classic parametric prediction error methods.The challenges it addresses lie at the intersection of several disciplines soRegularized System Identificationwill be of interest to a variety of researchers and practitioners in the areas of control systems, machine learning, statistics, and data science.This is an open access book.
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 77,26
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. Print on Demand.
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
EUR 78,90
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. PRINT ON DEMAND.
Edité par Springer International Publishing, 2022
ISBN 10 : 3030958590 ISBN 13 : 9783030958596
Langue: anglais
Vendeur : preigu, Osnabrück, Allemagne
EUR 50,35
Quantité disponible : 5 disponible(s)
Ajouter au panierBuch. Etat : Neu. Regularized System Identification | Learning Dynamic Models from Data | Gianluigi Pillonetto (u. a.) | Buch | xxiv | Englisch | 2022 | Springer International Publishing | EAN 9783030958596 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.