Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 26,35
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Vendeur : Chiron Media, Wallingford, Royaume-Uni
EUR 23,16
Autre deviseQuantité disponible : 10 disponible(s)
Ajouter au panierPF. Etat : New.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 26,12
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 26,99
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 29,14
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 33,53
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Edité par Springer International Publishing, Springer International Publishing, 2022
ISBN 10 : 3030958620 ISBN 13 : 9783030958626
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 42,79
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This open access book provides a comprehensive treatment of recent developments in kernel-based identification that are of interest to anyone engaged in learning dynamic systems from data. The reader is led step by step into understanding of a novel paradigm that leverages the power of machine learning without losing sight of the system-theoretical principles of black-box identification. The authors' reformulation of the identification problem in the light of regularization theory not only offers new insight on classical questions, but paves the way to new and powerful algorithms for a variety of linear and nonlinear problems. Regression methods such as regularization networks and support vector machines are the basis of techniques that extend the function-estimation problem to the estimation of dynamic models. Many examples, also from real-world applications, illustrate the comparative advantages of the new nonparametric approach with respect to classic parametric prediction error methods.The challenges it addresses lie at the intersection of several disciplines soRegularized System Identificationwill be of interest to a variety of researchers and practitioners in the areas of control systems, machine learning, statistics, and data science.This is an open access book.
Vendeur : California Books, Miami, FL, Etats-Unis
EUR 54,66
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : BargainBookStores, Grand Rapids, MI, Etats-Unis
EUR 51,38
Autre deviseQuantité disponible : 5 disponible(s)
Ajouter au panierPaperback or Softback. Etat : New. Regularized System Identification: Learning Dynamic Models from Data 1.24. Book.
Edité par Springer International Publishing, 2022
ISBN 10 : 3030958590 ISBN 13 : 9783030958596
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 53,49
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierBuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This open access book provides a comprehensive treatment of recent developments in kernel-based identification that are of interest to anyone engaged in learning dynamic systems from data. The reader is led step by step into understanding of a novel paradigm that leverages the power of machine learning without losing sight of the system-theoretical principles of black-box identification. The authors' reformulation of the identification problem in the light of regularization theory not only offers new insight on classical questions, but paves the way to new and powerful algorithms for a variety of linear and nonlinear problems. Regression methods such as regularization networks and support vector machines are the basis of techniques that extend the function-estimation problem to the estimation of dynamic models. Many examples, also from real-world applications, illustrate the comparative advantages of the new nonparametric approach with respect to classic parametric prediction error methods.The challenges it addresses lie at the intersection of several disciplines soRegularized System Identificationwill be of interest to a variety of researchers and practitioners in the areas of control systems, machine learning, statistics, and data science.This is an open access book.
Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 76,51
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New.
Vendeur : Best Price, Torrance, CA, Etats-Unis
EUR 44,12
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierEtat : New. SUPER FAST SHIPPING.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
EUR 47,93
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 77,97
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. Print on Demand.
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
EUR 80,98
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. PRINT ON DEMAND.