Edité par LAP LAMBERT Academic Publishing Nov 2016, 2016
ISBN 10 : 3659978205 ISBN 13 : 9783659978203
Langue: anglais
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 23,90
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Neuware -The novelty of this algorithm is to apply multiple sources of remote sensing data combined with data of unmanned weather stations, topography, ground cover,DEM, and astronomy and calendar rules. The results indicated that the model has high accuracy, reliability, and generalization ability. Factors such as cloudiness, ground vegetation, and water vapor show little interference, so the model seems suitable for large area retrieving under natural conditions. The required high-performance computation was achieved by a CPU + GPU isomery and synergy parallel computation system that improved computing speed by more than 1000-fold, with easily extendable computing capability. We found that the current algorithm is superior to seven major split-window algorithms and their best combined algorithms based on prediction errors, root-meansquare errors, and the percentage of data points withBooks on Demand GmbH, Überseering 33, 22297 Hamburg 84 pp. Englisch.
Edité par LAP LAMBERT Academic Publishing, 2016
ISBN 10 : 3659978205 ISBN 13 : 9783659978203
Langue: anglais
Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 37,34
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New.
Edité par LAP LAMBERT Academic Publishing, 2016
ISBN 10 : 3659978205 ISBN 13 : 9783659978203
Langue: anglais
Vendeur : Revaluation Books, Exeter, Royaume-Uni
EUR 42,49
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : Brand New. 84 pages. 8.66x5.91x0.19 inches. In Stock.
Edité par LAP LAMBERT Academic Publishing, 2016
ISBN 10 : 3659978205 ISBN 13 : 9783659978203
Langue: anglais
Vendeur : moluna, Greven, Allemagne
EUR 22,32
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Qin Jiang LinHis research interests include multisource remote sensing image processing,GIS & GIS system developing, high-performance computation (HPC) and its application in processing RS image, support vector machine (SVM) algorith.
Edité par LAP LAMBERT Academic Publishing, 2016
ISBN 10 : 3659978205 ISBN 13 : 9783659978203
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 23,90
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The novelty of this algorithm is to apply multiple sources of remote sensing data combined with data of unmanned weather stations, topography, ground cover,DEM, and astronomy and calendar rules. The results indicated that the model has high accuracy, reliability, and generalization ability. Factors such as cloudiness, ground vegetation, and water vapor show little interference, so the model seems suitable for large area retrieving under natural conditions. The required high-performance computation was achieved by a CPU + GPU isomery and synergy parallel computation system that improved computing speed by more than 1000-fold, with easily extendable computing capability. We found that the current algorithm is superior to seven major split-window algorithms and their best combined algorithms based on prediction errors, root-meansquare errors, and the percentage of data points with 3 C absolute error. Our SVM approach overcomes shortcomings of classical temperature remote sensing technologies, and is the first report of such application.
Edité par LAP LAMBERT Academic Publishing Nov 2016, 2016
ISBN 10 : 3659978205 ISBN 13 : 9783659978203
Langue: anglais
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 23,90
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The novelty of this algorithm is to apply multiple sources of remote sensing data combined with data of unmanned weather stations, topography, ground cover,DEM, and astronomy and calendar rules. The results indicated that the model has high accuracy, reliability, and generalization ability. Factors such as cloudiness, ground vegetation, and water vapor show little interference, so the model seems suitable for large area retrieving under natural conditions. The required high-performance computation was achieved by a CPU + GPU isomery and synergy parallel computation system that improved computing speed by more than 1000-fold, with easily extendable computing capability. We found that the current algorithm is superior to seven major split-window algorithms and their best combined algorithms based on prediction errors, root-meansquare errors, and the percentage of data points with 3 C absolute error. Our SVM approach overcomes shortcomings of classical temperature remote sensing technologies, and is the first report of such application. 84 pp. Englisch.
Edité par LAP LAMBERT Academic Publishing, 2016
ISBN 10 : 3659978205 ISBN 13 : 9783659978203
Langue: anglais
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 36,11
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. Print on Demand.
Edité par LAP LAMBERT Academic Publishing, 2016
ISBN 10 : 3659978205 ISBN 13 : 9783659978203
Langue: anglais
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
EUR 37,98
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. PRINT ON DEMAND.