Search preferences
Passer aux résultats principaux de la recherche

Filtres de recherche

Type d'article

  • Tous les types de produits 
  • Livres (2)
  • Magazines & Périodiques (Aucun autre résultat ne correspond à ces critères)
  • Bandes dessinées (Aucun autre résultat ne correspond à ces critères)
  • Partitions de musique (Aucun autre résultat ne correspond à ces critères)
  • Art, Affiches et Gravures (Aucun autre résultat ne correspond à ces critères)
  • Photographies (Aucun autre résultat ne correspond à ces critères)
  • Cartes (Aucun autre résultat ne correspond à ces critères)
  • Manuscrits & Papiers anciens (Aucun autre résultat ne correspond à ces critères)

Etat En savoir plus

  • Neuf (2)
  • Comme neuf, Très bon ou Bon (Aucun autre résultat ne correspond à ces critères)
  • Assez bon ou satisfaisant (Aucun autre résultat ne correspond à ces critères)
  • Moyen ou mauvais (Aucun autre résultat ne correspond à ces critères)
  • Conformément à la description (Aucun autre résultat ne correspond à ces critères)

Particularités

  • Ed. originale (Aucun autre résultat ne correspond à ces critères)
  • Signé (Aucun autre résultat ne correspond à ces critères)
  • Jaquette (Aucun autre résultat ne correspond à ces critères)
  • Avec images (2)
  • Sans impressions à la demande (2)

Langue (1)

Prix

  • Tous les prix 
  • Moins de EUR 20 (Aucun autre résultat ne correspond à ces critères)
  • EUR 20 à EUR 45 (Aucun autre résultat ne correspond à ces critères)
  • Plus de EUR 45 
Fourchette de prix personnalisée (EUR)

Livraison gratuite

  • Livraison gratuite à destination de France (Aucun autre résultat ne correspond à ces critères)

Pays

  • Nada Lavra¿

    Edité par Springer International Publishing, 2021

    ISBN 10 : 303068816X ISBN 13 : 9783030688165

    Langue: anglais

    Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

    Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

    Contacter le vendeur

    EUR 160,49

    Autre devise
    EUR 10,99 expédition depuis Allemagne vers France

    Destinations, frais et délais

    Quantité disponible : 1 disponible(s)

    Ajouter au panier

    Buch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This monograph addresses advances in representation learning, a cutting-edge research area of machine learning. Representation learning refers to modern data transformation techniques that convert data of different modalities and complexity, including texts, graphs, and relations, into compact tabular representations, which effectively capture their semantic properties and relations. The monograph focuses on (i) propositionalization approaches, established in relational learning and inductive logic programming, and (ii) embedding approaches, which have gained popularity with recent advances in deep learning. The authors establish a unifying perspective on representation learning techniques developed in these various areas of modern data science, enabling the reader to understand the common underlying principles and to gain insight using selected examples and sample Python code. The monograph should be of interest to a wide audience, ranging from data scientists, machine learning researchers and students to developers, software engineers and industrial researchers interested in hands-on AI solutions.

  • Nada Lavra¿

    Edité par Springer International Publishing, 2022

    ISBN 10 : 3030688194 ISBN 13 : 9783030688196

    Langue: anglais

    Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

    Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

    Contacter le vendeur

    EUR 160,49

    Autre devise
    EUR 10,99 expédition depuis Allemagne vers France

    Destinations, frais et délais

    Quantité disponible : 1 disponible(s)

    Ajouter au panier

    Taschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This monograph addresses advances in representation learning, a cutting-edge research area of machine learning. Representation learning refers to modern data transformation techniques that convert data of different modalities and complexity, including texts, graphs, and relations, into compact tabular representations, which effectively capture their semantic properties and relations. The monograph focuses on (i) propositionalization approaches, established in relational learning and inductive logic programming, and (ii) embedding approaches, which have gained popularity with recent advances in deep learning. The authors establish a unifying perspective on representation learning techniques developed in these various areas of modern data science, enabling the reader to understand the common underlying principles and to gain insight using selected examples and sample Python code. The monograph should be of interest to a wide audience, ranging from data scientists, machine learning researchers and students to developers, software engineers and industrial researchers interested in hands-on AI solutions.