Search preferences
Passer aux résultats principaux de la recherche

Filtres de recherche

Type d'article

  • Tous les types de produits 
  • Livres (3)
  • Magazines & Périodiques (Aucun autre résultat ne correspond à ces critères)
  • Bandes dessinées (Aucun autre résultat ne correspond à ces critères)
  • Partitions de musique (Aucun autre résultat ne correspond à ces critères)
  • Art, Affiches et Gravures (Aucun autre résultat ne correspond à ces critères)
  • Photographies (Aucun autre résultat ne correspond à ces critères)
  • Cartes (Aucun autre résultat ne correspond à ces critères)
  • Manuscrits & Papiers anciens (Aucun autre résultat ne correspond à ces critères)

Etat En savoir plus

  • Neuf (2)
  • Comme neuf, Très bon ou Bon (Aucun autre résultat ne correspond à ces critères)
  • Assez bon ou satisfaisant (1)
  • Moyen ou mauvais (Aucun autre résultat ne correspond à ces critères)
  • Conformément à la description (Aucun autre résultat ne correspond à ces critères)

Reliure

Particularités

  • Ed. originale (Aucun autre résultat ne correspond à ces critères)
  • Signé (Aucun autre résultat ne correspond à ces critères)
  • Jaquette (Aucun autre résultat ne correspond à ces critères)
  • Avec images (1)
  • Sans impressions à la demande (3)

Langue (1)

Prix

Fourchette de prix personnalisée (EUR)

Pays

  • Wolfgang Hackbusch

    Edité par Vieweg+teubner Verlag, Wiesbaden, 1989

    ISBN 10 : 3528080973 ISBN 13 : 9783528080976

    Langue: allemand

    Vendeur : Grand Eagle Retail, Mason, OH, Etats-Unis

    Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

    Contacter le vendeur

    EUR 60,70

    Autre devise
    Gratuit expédition vers Etats-Unis

    Destinations, frais et délais

    Quantité disponible : 1 disponible(s)

    Ajouter au panier

    Paperback. Etat : new. Paperback. In full multigrid methods for elliptic difference equations one works on a sequence of meshes where a number of pre- and/or postsmoothing steps are performed on each level. As is well known these methods can converge very fast on problems with a smooth solution and a regular mesh, but the rate of convergence can be severely degraded for problems with unisotropy or discontinuous coefficients unless some form of robust smoother is used. Also problems can arise with the increasingly coarser meshes because for some types of discretization methods, coercivity may be lost on coarse meshes and on massively parallel computers the computation cost of transporting information between computer processors devoted to work on various levels of the mesh can dominate the whole computing time. For discussions about some of these problems, see (11). Here we propose a method that uses only two levels of meshes, the fine and the coarse level, respec tively, and where the corrector on the coarse level is equal to a new type of preconditioner which uses an algebraic substructuring of the stiffness matrix. It is based on the block matrix tridiagonal structure one gets when the domain is subdivided into strips. This block-tridiagonal form is used to compute an approximate factorization whereby the Schur complements which arise in the recursive factorization are approximated in an indirect way, i. e. In full multigrid methods for elliptic difference equations one works on a sequence of meshes where a number of pre- and/or postsmoothing steps are performed on each level. As is well known these methods can converge very fast on problems with a smooth solution and a regular mesh, but the rate of convergence can be severely degraded for problems with unisotropy or discontinuous coefficients unless some form of robust smoother is used. Also problems can arise with the increasingly coarser meshes because for some types of discretization methods, coercivity may be lost on coarse meshes and on massively parallel computers the computation cost of transporting information between computer processors devoted to work on various levels of the mesh can dominate the whole computing time. For discussions about some of these problems, see (11). Here we propose a method that uses only two levels of meshes, the fine and the coarse level, respecA tively, and where the corrector on the coarse level is equal to a new type of preconditioner which uses an algebraic substructuring of the stiffness matrix. It is based on the block matrix tridiagonal structure one gets when the domain is subdivided into strips. This block-tridiagonal form is used to compute an approximate factorization whereby the Schur complements which arise in the recursive factorization are approximated in an indirect way, i. e Shipping may be from multiple locations in the US or from the UK, depending on stock availability.

  • Hackbusch, Wolfgang:

    Edité par Friedrich Vieweg & Sohn Verlagsgesellschaft mbH, 1989

    ISBN 10 : 3528080973 ISBN 13 : 9783528080976

    Langue: allemand

    Vendeur : Studibuch, Stuttgart, Allemagne

    Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

    Contacter le vendeur

    EUR 72 expédition depuis Allemagne vers Etats-Unis

    Destinations, frais et délais

    Quantité disponible : 1 disponible(s)

    Ajouter au panier

    perfect. Etat : Gut. 256 Seiten; 9783528080976.3 Gewicht in Gramm: 500.

  • Wolfgang Hackbusch

    Edité par Vieweg+teubner Verlag, Wiesbaden, 1989

    ISBN 10 : 3528080973 ISBN 13 : 9783528080976

    Langue: allemand

    Vendeur : AussieBookSeller, Truganina, VIC, Australie

    Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

    Contacter le vendeur

    EUR 117,01

    Autre devise
    EUR 31,75 expédition depuis Australie vers Etats-Unis

    Destinations, frais et délais

    Quantité disponible : 1 disponible(s)

    Ajouter au panier

    Paperback. Etat : new. Paperback. In full multigrid methods for elliptic difference equations one works on a sequence of meshes where a number of pre- and/or postsmoothing steps are performed on each level. As is well known these methods can converge very fast on problems with a smooth solution and a regular mesh, but the rate of convergence can be severely degraded for problems with unisotropy or discontinuous coefficients unless some form of robust smoother is used. Also problems can arise with the increasingly coarser meshes because for some types of discretization methods, coercivity may be lost on coarse meshes and on massively parallel computers the computation cost of transporting information between computer processors devoted to work on various levels of the mesh can dominate the whole computing time. For discussions about some of these problems, see (11). Here we propose a method that uses only two levels of meshes, the fine and the coarse level, respec tively, and where the corrector on the coarse level is equal to a new type of preconditioner which uses an algebraic substructuring of the stiffness matrix. It is based on the block matrix tridiagonal structure one gets when the domain is subdivided into strips. This block-tridiagonal form is used to compute an approximate factorization whereby the Schur complements which arise in the recursive factorization are approximated in an indirect way, i. e. In full multigrid methods for elliptic difference equations one works on a sequence of meshes where a number of pre- and/or postsmoothing steps are performed on each level. As is well known these methods can converge very fast on problems with a smooth solution and a regular mesh, but the rate of convergence can be severely degraded for problems with unisotropy or discontinuous coefficients unless some form of robust smoother is used. Also problems can arise with the increasingly coarser meshes because for some types of discretization methods, coercivity may be lost on coarse meshes and on massively parallel computers the computation cost of transporting information between computer processors devoted to work on various levels of the mesh can dominate the whole computing time. For discussions about some of these problems, see (11). Here we propose a method that uses only two levels of meshes, the fine and the coarse level, respecA tively, and where the corrector on the coarse level is equal to a new type of preconditioner which uses an algebraic substructuring of the stiffness matrix. It is based on the block matrix tridiagonal structure one gets when the domain is subdivided into strips. This block-tridiagonal form is used to compute an approximate factorization whereby the Schur complements which arise in the recursive factorization are approximated in an indirect way, i. e Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.