Vendeur : Books From California, Simi Valley, CA, Etats-Unis
EUR 40,89
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierpaperback. Etat : Very Good.
Vendeur : thebookforest.com, San Rafael, CA, Etats-Unis
EUR 44,51
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : New. Well packaged and promptly shipped from California. Partnered with Friends of the Library since 2010.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 53,19
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
EUR 52,02
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Best Price, Torrance, CA, Etats-Unis
EUR 48,04
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierEtat : New. SUPER FAST SHIPPING.
Vendeur : California Books, Miami, FL, Etats-Unis
EUR 59,41
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Antiquariat Bookfarm, Löbnitz, Allemagne
EUR 43,20
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierSoftcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. C-04205 9783540225720 Sprache: Englisch Gewicht in Gramm: 550.
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 54,03
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 58,18
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Vendeur : Chiron Media, Wallingford, Royaume-Uni
EUR 56,50
Autre deviseQuantité disponible : 10 disponible(s)
Ajouter au panierPF. Etat : New.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 58,17
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 75,38
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. pp. 292.
Edité par Springer Berlin Heidelberg, Springer Berlin Heidelberg Aug 2004, 2004
ISBN 10 : 3540225722 ISBN 13 : 9783540225720
Langue: anglais
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 53,49
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Neuware -Statistical learning theory is aimed at analyzing complex data with necessarily approximate models. This book is intended for an audience with a graduate background in probability theory and statistics. It will be useful to any reader wondering why it may be a good idea, to use as is often done in practice a notoriously 'wrong'' (i.e. over-simplified) model to predict, estimate or classify. This point of view takes its roots in three fields: information theory, statistical mechanics, and PAC-Bayesian theorems. Results on the large deviations of trajectories of Markov chains with rare transitions are also included. They are meant to provide a better understanding of stochastic optimization algorithms of common use in computing estimators. The author focuses on non-asymptotic bounds of the statistical risk, allowing one to choose adaptively between rich and structured families of models and corresponding estimators. Two mathematical objects pervade the book: entropy and Gibbs measures. The goal is to show how to turn them into versatile and efficient technical tools, that will stimulate further studies and results.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 292 pp. Englisch.
Edité par Springer Berlin Heidelberg, 2004
ISBN 10 : 3540225722 ISBN 13 : 9783540225720
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 53,49
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Statistical learning theory is aimed at analyzing complex data with necessarily approximate models. This book is intended for an audience with a graduate background in probability theory and statistics. It will be useful to any reader wondering why it may be a good idea, to use asis often done in practice a notoriously 'wrong'' (i.e. over-simplified) model to predict, estimate or classify. This point of view takes its roots in three fields: information theory, statistical mechanics, and PAC-Bayesian theorems. Results on the large deviations of trajectories of Markov chains with rare transitions are also included. They are meant to provide a better understanding of stochastic optimization algorithms of common use in computing estimators. The author focuses on non-asymptotic bounds of the statistical risk, allowing one to choose adaptively between rich and structured families of models and corresponding estimators. Two mathematical objects pervade the book: entropy and Gibbs measures. The goal is to show how to turn them into versatile and efficient technical tools,that will stimulate further studies and results.
Vendeur : BennettBooksLtd, San Diego, NV, Etats-Unis
EUR 117,45
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierpaperback. Etat : New. In shrink wrap. Looks like an interesting title!
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 116,05
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
EUR 106,59
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : Like New. Like New. book.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 137,83
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Edité par Springer Berlin Heidelberg Aug 2004, 2004
ISBN 10 : 3540225722 ISBN 13 : 9783540225720
Langue: anglais
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 53,49
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Statistical learning theory is aimed at analyzing complex data with necessarily approximate models. This book is intended for an audience with a graduate background in probability theory and statistics. It will be useful to any reader wondering why it may be a good idea, to use asis often done in practice a notoriously 'wrong'' (i.e. over-simplified) model to predict, estimate or classify. This point of view takes its roots in three fields: information theory, statistical mechanics, and PAC-Bayesian theorems. Results on the large deviations of trajectories of Markov chains with rare transitions are also included. They are meant to provide a better understanding of stochastic optimization algorithms of common use in computing estimators. The author focuses on non-asymptotic bounds of the statistical risk, allowing one to choose adaptively between rich and structured families of models and corresponding estimators. Two mathematical objects pervade the book: entropy and Gibbs measures. The goal is to show how to turn them into versatile and efficient technical tools,that will stimulate further studies and results. 292 pp. Englisch.
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 76,43
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. Print on Demand pp. 292 Illus.
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
EUR 80,04
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. PRINT ON DEMAND pp. 292.
Edité par Springer Berlin Heidelberg, 2004
ISBN 10 : 3540225722 ISBN 13 : 9783540225720
Langue: anglais
Vendeur : moluna, Greven, Allemagne
EUR 48,37
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierKartoniert / Broschiert. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Statistical learning theory is aimed at analyzing complex data with necessarily approximate models. This book is intended for an audience with a graduate background in probability theory and statistics. It will be useful to any reader wondering why it ma.