Vendeur : SpringBooks, Berlin, Allemagne
Edition originale
EUR 55,43
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierSoftcover. Etat : Very Good. 1. Auflage. Unread, some shelfwear. Immediately dispatched from Germany.
Vendeur : SpringBooks, Berlin, Allemagne
Edition originale
EUR 62,58
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierHardcover. Etat : Very Good. 1. Auflage. Unread, with some shelfwear. Immediately dispatched from Germany.
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 170,64
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Edité par Springer International Publishing, Springer International Publishing, 2020
ISBN 10 : 3030224589 ISBN 13 : 9783030224585
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 171,19
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tenor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics.Allows readers to analyze data sets with small samples and many features;Provides a fast algorithm, based upon linear algebra, to analyze big data;Includes several applications to multi-view data analyses, with a focus on bioinformatics.
Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 180,10
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : New. Second Edition 2024 NO-PA16APR2015-KAP.
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 186,74
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : New.
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
EUR 192,96
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierHRD. Etat : New. New Book. Shipped from UK. Established seller since 2000.
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
EUR 191,57
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : New.
Edité par Springer International Publishing AG, Cham, 2024
ISBN 10 : 3031609816 ISBN 13 : 9783031609817
Langue: anglais
Vendeur : AussieBookSeller, Truganina, VIC, Australie
EUR 184,97
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierHardcover. Etat : new. Hardcover. This updated book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tensor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics. This updated book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tensor decomposition. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Vendeur : California Books, Miami, FL, Etats-Unis
EUR 211,10
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 218,46
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. pp. XVIII, 321 111 illus., 94 illus. in color. 1 Edition NO-PA16APR2015-KAP.
Edité par Springer International Publishing, Springer International Publishing, 2024
ISBN 10 : 3031609816 ISBN 13 : 9783031609817
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 213,99
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierBuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This updated book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tensor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics.
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 234,37
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
EUR 171,10
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Revaluation Books, Exeter, Royaume-Uni
EUR 238,03
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierHardcover. Etat : Brand New. 321 pages. 9.25x6.25x0.75 inches. In Stock.
Vendeur : California Books, Miami, FL, Etats-Unis
EUR 256,40
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Edité par Springer International Publishing AG, Cham, 2024
ISBN 10 : 3031609816 ISBN 13 : 9783031609817
Langue: anglais
Vendeur : CitiRetail, Stevenage, Royaume-Uni
EUR 245,73
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierHardcover. Etat : new. Hardcover. This updated book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tensor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics. This updated book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tensor decomposition. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
EUR 246,36
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : New. New. book.
Edité par Springer International Publishing AG, Cham, 2024
ISBN 10 : 3031609816 ISBN 13 : 9783031609817
Langue: anglais
Vendeur : Grand Eagle Retail, Fairfield, OH, Etats-Unis
EUR 251,93
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierHardcover. Etat : new. Hardcover. This updated book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tensor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics. This updated book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tensor decomposition. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Vendeur : Revaluation Books, Exeter, Royaume-Uni
EUR 315,04
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierHardcover. Etat : Brand New. 2nd edition. 555 pages. 9.25x6.10x9.21 inches. In Stock.
Edité par Springer International Publishing, 2020
ISBN 10 : 3030224589 ISBN 13 : 9783030224585
Langue: anglais
Vendeur : moluna, Greven, Allemagne
EUR 146,12
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierKartoniert / Broschiert. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Allows readers to analyze data sets with small samples and many featuresProvides a fast algorithm, based upon linear algebra, to analyze big dataIncludes several applications to multi-view data analyses, with a focus on bioinf.
Edité par Springer International Publishing Sep 2020, 2020
ISBN 10 : 3030224589 ISBN 13 : 9783030224585
Langue: anglais
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 171,19
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tenor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics.Allows readers to analyze data sets with small samples and many features;Provides a fast algorithm, based upon linear algebra, to analyze big data;Includes several applications to multi-view data analyses, with a focus on bioinformatics. 340 pp. Englisch.
Edité par Springer, Berlin|Springer International Publishing|Springer, 2024
ISBN 10 : 3031609816 ISBN 13 : 9783031609817
Langue: anglais
Vendeur : moluna, Greven, Allemagne
EUR 181,53
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierGebunden. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This updated book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own .
Edité par Springer, Berlin, Springer International Publishing, Springer, 2024
ISBN 10 : 3031609816 ISBN 13 : 9783031609817
Langue: anglais
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 213,99
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierBuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This updated book proposes applications of tensor decomposition to unsupervised feature extraction and feature selection. The author posits that although supervised methods including deep learning have become popular, unsupervised methods have their own advantages. He argues that this is the case because unsupervised methods are easy to learn since tensor decomposition is a conventional linear methodology. This book starts from very basic linear algebra and reaches the cutting edge methodologies applied to difficult situations when there are many features (variables) while only small number of samples are available. The author includes advanced descriptions about tensor decomposition including Tucker decomposition using high order singular value decomposition as well as higher order orthogonal iteration, and train tensor decomposition. The author concludes by showing unsupervised methods and their application to a wide range of topics. 527 pp. Englisch.
Vendeur : Revaluation Books, Exeter, Royaume-Uni
EUR 220,61
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierHardcover. Etat : Brand New. 2nd edition. 555 pages. 9.25x6.10x9.21 inches. In Stock. This item is printed on demand.
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 228,65
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. Print on Demand pp. XVIII, 321 111 illus., 94 illus. in color.
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
EUR 231,22
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. PRINT ON DEMAND pp. XVIII, 321 111 illus., 94 illus. in color.