Edité par Cambridge University Press, 2025
ISBN 10 : 1107430763 ISBN 13 : 9781107430761
Langue: anglais
Vendeur : Speedyhen, London, Royaume-Uni
EUR 45,12
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierEtat : NEW.
Edité par Cambridge University Press, 2025
ISBN 10 : 1107430763 ISBN 13 : 9781107430761
Langue: anglais
Vendeur : California Books, Miami, FL, Etats-Unis
EUR 52,61
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Edité par Cambridge University Press, 2025
ISBN 10 : 1107430763 ISBN 13 : 9781107430761
Langue: anglais
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 54,32
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Edité par Cambridge University Press 2/6/2025, 2025
ISBN 10 : 1107430763 ISBN 13 : 9781107430761
Langue: anglais
Vendeur : BargainBookStores, Grand Rapids, MI, Etats-Unis
EUR 51,60
Autre deviseQuantité disponible : 5 disponible(s)
Ajouter au panierPaperback or Softback. Etat : New. Variational Bayesian Learning Theory 1.79. Book.
Edité par Cambridge University Press, 2025
ISBN 10 : 1107430763 ISBN 13 : 9781107430761
Langue: anglais
Vendeur : Revaluation Books, Exeter, Royaume-Uni
EUR 53,34
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : Brand New. 559 pages. 6.00x1.25x9.00 inches. In Stock.
Edité par Cambridge University Press, 2025
ISBN 10 : 1107430763 ISBN 13 : 9781107430761
Langue: anglais
Vendeur : Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande
EUR 59,77
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierEtat : New. 2025. paperback. . . . . .
Edité par Cambridge University Press, 2025
ISBN 10 : 1107430763 ISBN 13 : 9781107430761
Langue: anglais
Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 58,02
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : New.
Edité par Cambridge University Press, 2025
ISBN 10 : 1107430763 ISBN 13 : 9781107430761
Langue: anglais
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 49,22
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Edité par Cambridge University Press, 2025
ISBN 10 : 1107430763 ISBN 13 : 9781107430761
Langue: anglais
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 58,62
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : New.
Edité par Cambridge University Press, 2025
ISBN 10 : 1107430763 ISBN 13 : 9781107430761
Langue: anglais
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
EUR 59,47
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : New.
Edité par Cambridge University Press, 2025
ISBN 10 : 1107430763 ISBN 13 : 9781107430761
Langue: anglais
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 53,18
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Edité par Cambridge University Press, GB, 2025
ISBN 10 : 1107430763 ISBN 13 : 9781107430761
Langue: anglais
Vendeur : Rarewaves.com UK, London, Royaume-Uni
EUR 67,94
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierPaperback. Etat : New. Variational Bayesian learning is one of the most popular methods in machine learning. Designed for researchers and graduate students in machine learning, this book summarizes recent developments in the non-asymptotic and asymptotic theory of variational Bayesian learning and suggests how this theory can be applied in practice. The authors begin by developing a basic framework with a focus on conjugacy, which enables the reader to derive tractable algorithms. Next, it summarizes non-asymptotic theory, which, although limited in application to bilinear models, precisely describes the behavior of the variational Bayesian solution and reveals its sparsity inducing mechanism. Finally, the text summarizes asymptotic theory, which reveals phase transition phenomena depending on the prior setting, thus providing suggestions on how to set hyperparameters for particular purposes. Detailed derivations allow readers to follow along without prior knowledge of the mathematical techniques specific to Bayesian learning.
Edité par Cambridge University Press, 2025
ISBN 10 : 1107430763 ISBN 13 : 9781107430761
Langue: anglais
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 54,31
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Edité par Cambridge University Press, GB, 2025
ISBN 10 : 1107430763 ISBN 13 : 9781107430761
Langue: anglais
Vendeur : Rarewaves.com USA, London, LONDO, Royaume-Uni
EUR 74,18
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierPaperback. Etat : New. Variational Bayesian learning is one of the most popular methods in machine learning. Designed for researchers and graduate students in machine learning, this book summarizes recent developments in the non-asymptotic and asymptotic theory of variational Bayesian learning and suggests how this theory can be applied in practice. The authors begin by developing a basic framework with a focus on conjugacy, which enables the reader to derive tractable algorithms. Next, it summarizes non-asymptotic theory, which, although limited in application to bilinear models, precisely describes the behavior of the variational Bayesian solution and reveals its sparsity inducing mechanism. Finally, the text summarizes asymptotic theory, which reveals phase transition phenomena depending on the prior setting, thus providing suggestions on how to set hyperparameters for particular purposes. Detailed derivations allow readers to follow along without prior knowledge of the mathematical techniques specific to Bayesian learning.
Edité par Cambridge University Press, 2025
ISBN 10 : 1107430763 ISBN 13 : 9781107430761
Langue: anglais
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 59,14
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Edité par Cambridge University Press, 2025
ISBN 10 : 1107430763 ISBN 13 : 9781107430761
Langue: anglais
Vendeur : Kennys Bookstore, Olney, MD, Etats-Unis
EUR 74,88
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierEtat : New. 2025. paperback. . . . . . Books ship from the US and Ireland.
Edité par Cambridge University Press, 2025
ISBN 10 : 1107430763 ISBN 13 : 9781107430761
Langue: anglais
Vendeur : Revaluation Books, Exeter, Royaume-Uni
EUR 72,76
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierPaperback. Etat : Brand New. 559 pages. 6.00x1.25x9.00 inches. In Stock.
Edité par Cambridge University Press, Cambridge, 2025
ISBN 10 : 1107430763 ISBN 13 : 9781107430761
Langue: anglais
Vendeur : CitiRetail, Stevenage, Royaume-Uni
EUR 55,95
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : new. Paperback. Variational Bayesian learning is one of the most popular methods in machine learning. Designed for researchers and graduate students in machine learning, this book summarizes recent developments in the non-asymptotic and asymptotic theory of variational Bayesian learning and suggests how this theory can be applied in practice. The authors begin by developing a basic framework with a focus on conjugacy, which enables the reader to derive tractable algorithms. Next, it summarizes non-asymptotic theory, which, although limited in application to bilinear models, precisely describes the behavior of the variational Bayesian solution and reveals its sparsity inducing mechanism. Finally, the text summarizes asymptotic theory, which reveals phase transition phenomena depending on the prior setting, thus providing suggestions on how to set hyperparameters for particular purposes. Detailed derivations allow readers to follow along without prior knowledge of the mathematical techniques specific to Bayesian learning. Designed for researchers and graduate students in machine learning, this book introduces the theory of variational Bayesian learning, a popular machine learning method, and suggests how to make use of it in practice. Detailed derivations allow readers to follow along without prior knowledge of the specific mathematical techniques. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Edité par Cambridge University Press, Cambridge, 2025
ISBN 10 : 1107430763 ISBN 13 : 9781107430761
Langue: anglais
Vendeur : AussieBookSeller, Truganina, VIC, Australie
EUR 79,42
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : new. Paperback. Variational Bayesian learning is one of the most popular methods in machine learning. Designed for researchers and graduate students in machine learning, this book summarizes recent developments in the non-asymptotic and asymptotic theory of variational Bayesian learning and suggests how this theory can be applied in practice. The authors begin by developing a basic framework with a focus on conjugacy, which enables the reader to derive tractable algorithms. Next, it summarizes non-asymptotic theory, which, although limited in application to bilinear models, precisely describes the behavior of the variational Bayesian solution and reveals its sparsity inducing mechanism. Finally, the text summarizes asymptotic theory, which reveals phase transition phenomena depending on the prior setting, thus providing suggestions on how to set hyperparameters for particular purposes. Detailed derivations allow readers to follow along without prior knowledge of the mathematical techniques specific to Bayesian learning. Designed for researchers and graduate students in machine learning, this book introduces the theory of variational Bayesian learning, a popular machine learning method, and suggests how to make use of it in practice. Detailed derivations allow readers to follow along without prior knowledge of the specific mathematical techniques. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Edité par Cambridge University Press, Cambridge, 2025
ISBN 10 : 1107430763 ISBN 13 : 9781107430761
Langue: anglais
Vendeur : Grand Eagle Retail, Mason, OH, Etats-Unis
EUR 51,56
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : new. Paperback. Variational Bayesian learning is one of the most popular methods in machine learning. Designed for researchers and graduate students in machine learning, this book summarizes recent developments in the non-asymptotic and asymptotic theory of variational Bayesian learning and suggests how this theory can be applied in practice. The authors begin by developing a basic framework with a focus on conjugacy, which enables the reader to derive tractable algorithms. Next, it summarizes non-asymptotic theory, which, although limited in application to bilinear models, precisely describes the behavior of the variational Bayesian solution and reveals its sparsity inducing mechanism. Finally, the text summarizes asymptotic theory, which reveals phase transition phenomena depending on the prior setting, thus providing suggestions on how to set hyperparameters for particular purposes. Detailed derivations allow readers to follow along without prior knowledge of the mathematical techniques specific to Bayesian learning. Designed for researchers and graduate students in machine learning, this book introduces the theory of variational Bayesian learning, a popular machine learning method, and suggests how to make use of it in practice. Detailed derivations allow readers to follow along without prior knowledge of the specific mathematical techniques. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Edité par Cambridge University Press, 2019
ISBN 10 : 1107076153 ISBN 13 : 9781107076150
Langue: anglais
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 134,46
Autre deviseQuantité disponible : 5 disponible(s)
Ajouter au panierEtat : As New. Unread book in perfect condition.
Edité par Cambridge University Press, 2019
ISBN 10 : 1107076153 ISBN 13 : 9781107076150
Langue: anglais
Vendeur : Mooney's bookstore, Den Helder, Pays-Bas
EUR 140,98
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : Very good.
Edité par Cambridge University Press, 2019
ISBN 10 : 1107076153 ISBN 13 : 9781107076150
Langue: anglais
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 142,34
Autre deviseQuantité disponible : 5 disponible(s)
Ajouter au panierEtat : As New. Unread book in perfect condition.
Edité par Cambridge University Press, 2019
ISBN 10 : 1107076153 ISBN 13 : 9781107076150
Langue: anglais
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 143,62
Autre deviseQuantité disponible : 5 disponible(s)
Ajouter au panierEtat : New.
Edité par Cambridge University Press, 2019
ISBN 10 : 1107076153 ISBN 13 : 9781107076150
Langue: anglais
Vendeur : California Books, Miami, FL, Etats-Unis
EUR 160,51
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Edité par Cambridge University Press, 2019
ISBN 10 : 1107076153 ISBN 13 : 9781107076150
Langue: anglais
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 163,31
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Edité par Cambridge University Press, 2019
ISBN 10 : 1107076153 ISBN 13 : 9781107076150
Langue: anglais
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 163,30
Autre deviseQuantité disponible : 5 disponible(s)
Ajouter au panierEtat : New.
Edité par Cambridge University Press CUP, 2019
ISBN 10 : 1107076153 ISBN 13 : 9781107076150
Langue: anglais
Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 187,88
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New.
Edité par Cambridge University Press, Cambridge, 2019
ISBN 10 : 1107076153 ISBN 13 : 9781107076150
Langue: anglais
Vendeur : CitiRetail, Stevenage, Royaume-Uni
EUR 172,05
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierHardcover. Etat : new. Hardcover. Variational Bayesian learning is one of the most popular methods in machine learning. Designed for researchers and graduate students in machine learning, this book summarizes recent developments in the non-asymptotic and asymptotic theory of variational Bayesian learning and suggests how this theory can be applied in practice. The authors begin by developing a basic framework with a focus on conjugacy, which enables the reader to derive tractable algorithms. Next, it summarizes non-asymptotic theory, which, although limited in application to bilinear models, precisely describes the behavior of the variational Bayesian solution and reveals its sparsity inducing mechanism. Finally, the text summarizes asymptotic theory, which reveals phase transition phenomena depending on the prior setting, thus providing suggestions on how to set hyperparameters for particular purposes. Detailed derivations allow readers to follow along without prior knowledge of the mathematical techniques specific to Bayesian learning. Designed for researchers and graduate students in machine learning, this book introduces the theory of variational Bayesian learning, a popular machine learning method, and suggests how to make use of it in practice. Detailed derivations allow readers to follow along without prior knowledge of the specific mathematical techniques. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Edité par Cambridge University Press, 2019
ISBN 10 : 1107076153 ISBN 13 : 9781107076150
Langue: anglais
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
EUR 142,43
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.