Articles liés à Learning Abstract Algebra with ISETL

Learning Abstract Algebra with ISETL - Couverture souple

 
9781461226031: Learning Abstract Algebra with ISETL

L'édition de cet ISBN n'est malheureusement plus disponible.

Synopsis

1 Mathematical Constructions in ISETL.- 1.1 Using ISETL.- 1.1.1 Activities.- 1.1.2 Getting started.- 1.1.3 Simple objects and operations on them.- 1.1.4 Control statements.- 1.1.5 Exercises.- 1.2 Compound objects and operations on them.- 1.2.1 Activities.- 1.2.2 Tuples.- 1.2.3 Sets.- 1.2.4 Set and tuple formers.- 1.2.5 Set operations.- 1.2.6 Permutations.- 1.2.7 Quantification.- 1.2.8 Miscellaneous ISETL features.- 1.2.9 VISETL.- 1.2.10 Exercises.- 1.3 Functions in ISETL.- 1.3.1 Activities.- 1.3.2 Funcs.- 1.3.3 Alternative syntax for funcs.- 1.3.4 Using furies to represent situations.- 1.3.5 Furies for binary operations.- 1.3.6 Fumes to test properties.- 1.3.7 Smaps.- 1.3.8 Procs.- 1.3.9 Exercises.- 2 Groups.- 2.1 Getting acquainted with groups.- 2.1.1 Activities.- 2.1.2 Definition of a group.- 2.1.3 Examples of groups.- Number systems.- Integers mod n.- Symmetric groups.- Symmetries of the square.- Groups of matrices.- 2.1.4 Elementary properties of groups.- 2.1.5 Exercises.- 2.2 The modular groups and the symmetric groups.- 2.2.1 Activities.- 2.2.2 The modular groups Zn.- 2.2.3 The symmetric groups Sn.- Orbits and cycles.- 2.2.4 Exercises.- 2.3 Properties of groups.- 2.3.1 Activities.- 2.3.2 The specific and the general.- 2.3.3 The cancellation law-An illustration of the abstract method.- 2.3.4 How many groups are there?.- Classifying groups of order 4.- 2.3.5 Looking ahead-subgroups.- 2.3.6 Summary of examples and non-examples of groups.- 2.3.7 Exercises.- 3 Subgroups.- 3.1 Definitions and examples.- 3.1.1 Activities.- 3.1.2 Subsets of a group.- Definition of a subgroup.- 3.1.3 Examples of subgroups.- Embedding one group in another.- Conjugates.- Cycle decomposition and conjugates in Sn.- 3.1.4 Exercises.- 3.2 Cyclic groups and their subgroups.- 3.2.1 Activities.- 3.2.2 The subgroup generated by a single element.- 3.2.3 Cyclic groups.- The idea of the proof.- 3.2.4 Generators.- Generators of Sn.- Parity-even and odd permutations.- Determining the parity of a permutation.- 3.2.5 Exercises.- 3.3 Lagrange's theorem.- 3.3.1 Activities.- 3.3.2 What Lagrange's theorem is all about.- 3.3.3 Cosets.- 3.3.4 The proof of Lagrange's theorem.- 3.3.5 Exercises.- 4 The Fundamental Homomorphism Theorem.- 4.1 Quotient groups.- 4.1.1 Activities.- 4.1.2 Normal subgroups.- Multiplying cosets by representatives.- 4.1.3 The quotient group.- 4.1.4 Exercises.- 4.2 Homomorphisms.- 4.2.1 Activities.- 4.2.2 Homomorphisms and kernels.- 4.2.3 Examples.- 4.2.4 Invariants.- 4.2.5 Homomorphisms and normal subgroups.- An interesting example.- 4.2.6 Isomorphisms.- 4.2.7 Identifications.- 4.2.8 Exercises.- 4.3 The homomorphism theorem.- 4.3.1 Activities.- 4.3.2 The canonical homomorphism.- 4.3.3 The fundamental homomorphism theorem.- 4.3.4 Exercises.- 5 Rings.- 5.1 Rings.- 5.1.1 Activities.- 5.1.2 Definition of a ring.- 5.1.3 Examples of rings.- 5.1.4 Rings with additional properties.- Integral domains.- Fields.- 5.1.5 Constructing new rings from old-matrices.- 5.1.6 Constructing new rings from old-polynomials.- 5.1.7 Constructing new rings from old-functions.- 5.1.8 Elementary properties-arithmetic.- 5.1.9 Exercises.- 5.2 Ideals.- 5.2.1 Activities.- 5.2.2 Analogies between groups and rings.- 5.2.3 Subrings.- Definition of subring.- 5.2.4 Examples of subrings.- Subrings of Zn and Z.- Subrings of ?(R).- Subrings of polynomial rings.- Subrings of rings of functions.- 5.2.5 Ideals and quotient rings.- Definition of ideal.- Examples of ideals.- 5.2.6 Elementary properties of ideals.- 5.2.7 Elementary properties of quotient rings.- Quotient rings that are integral domains-prime ideals.- Quotient rings that are fields-maximal ideals.- 5.2.8 Exercises.- 5.3 Homomorphisms and isomorphisms.- 5.3.1 Activities.- 5.3.2 Definition of homomorphism and isomorphism.- Group homomorphisms vs. ring homomorphisms.- 5.3.3 Examples of homomorphisms and isomorphisms.- Homomorphisms from Zn to Zk.- Homomorphisms of Z.- Homomorphisms of polynomial rings.- Embeddings-Z, Zn as univ

Les informations fournies dans la section « Synopsis » peuvent faire référence à une autre édition de ce titre.

  • ÉditeurSpringer
  • Date d'édition2014
  • ISBN 10 1461226031
  • ISBN 13 9781461226031
  • ReliurePaperback
  • Langueanglais
  • Coordonnées du fabricantnon disponible

(Aucun exemplaire disponible)

Chercher:



Créez une demande

Vous ne trouvez pas le livre que vous recherchez ? Nous allons poursuivre vos recherches. Si l'un de nos libraires l'ajoute aux offres sur AbeBooks, nous vous le ferons savoir !

Créez une demande