Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 53,82
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Vendeur : Buchpark, Trebbin, Allemagne
EUR 83,09
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : Hervorragend. Zustand: Hervorragend | Seiten: 319 | Sprache: Englisch | Produktart: Bücher.
Edité par Springer Nature Singapore, 2023
ISBN 10 : 9811965528 ISBN 13 : 9789811965524
Langue: anglais
Vendeur : Buchpark, Trebbin, Allemagne
EUR 105,23
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : Hervorragend. Zustand: Hervorragend | Seiten: 320 | Sprache: Englisch | Produktart: Bücher.
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 139,69
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Edité par Springer Nature Singapore Mär 2024, 2024
ISBN 10 : 9811965552 ISBN 13 : 9789811965555
Langue: anglais
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 149,79
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Neuware -This book contains select chapters on support vector algorithms from different perspectives, including mathematical background, properties of various kernel functions, and several applications. The main focus of this book is on orthogonal kernel functions, and the properties of the classical kernel functions¿Chebyshev, Legendre, Gegenbauer, and Jacobi¿are reviewed in some chapters. Moreover, the fractional form of these kernel functions is introduced in the same chapters, and for ease of use for these kernel functions, a tutorial on a Python package named ORSVM is presented. The book also exhibits a variety of applications for support vector algorithms, and in addition to the classification, these algorithms along with the introduced kernel functions are utilized for solving ordinary, partial, integro, and fractional differential equations.On the other hand, nowadays, the real-time and big data applications of support vector algorithms are growing. Consequently, the Compute Unified Device Architecture (CUDA) parallelizing the procedure of support vector algorithms based on orthogonal kernel functions is presented. The book sheds light on how to use support vector algorithms based on orthogonal kernel functions in different situations and gives a significant perspective to all machine learning and scientific machine learning researchers all around the world to utilize fractional orthogonal kernel functions in their pattern recognition or scientific computing problems.Springer-Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 320 pp. Englisch.
Edité par Springer Nature Singapore, Springer Nature Singapore Mär 2023, 2023
ISBN 10 : 9811965528 ISBN 13 : 9789811965524
Langue: anglais
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 149,79
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierBuch. Etat : Neu. Neuware -This book contains select chapters on support vector algorithms from different perspectives, including mathematical background, properties of various kernel functions, and several applications. The main focus of this book is on orthogonal kernel functions, and the properties of the classical kernel functions¿Chebyshev, Legendre, Gegenbauer, and Jacobi¿are reviewed in some chapters. Moreover, the fractional form of these kernel functions is introduced in the same chapters, and for ease of use for these kernel functions, a tutorial on a Python package named ORSVM is presented. The book also exhibits a variety of applications for support vector algorithms, and in addition to the classification, these algorithms along with the introduced kernel functions are utilized for solving ordinary, partial, integro, and fractional differential equations.On the other hand, nowadays, the real-time and big data applications of support vector algorithms are growing. Consequently, the Compute Unified Device Architecture (CUDA) parallelizing the procedure of support vector algorithms based on orthogonal kernel functions is presented. The book sheds light on how to use support vector algorithms based on orthogonal kernel functions in different situations and gives a significant perspective to all machine learning and scientific machine learning researchers all around the world to utilize fractional orthogonal kernel functions in their pattern recognition or scientific computing problems.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 320 pp. Englisch.
Edité par Springer Nature Singapore, 2024
ISBN 10 : 9811965552 ISBN 13 : 9789811965555
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 153,90
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book contains select chapters on support vector algorithms from different perspectives, including mathematical background, properties of various kernel functions, and several applications. The main focus of this book is on orthogonal kernel functions, and the properties of the classical kernel functions-Chebyshev, Legendre, Gegenbauer, and Jacobi-are reviewed in some chapters. Moreover, the fractional form of these kernel functions is introduced in the same chapters, and for ease of use for these kernel functions, a tutorial on a Python package named ORSVM is presented. The book also exhibits a variety of applications for support vector algorithms, and in addition to the classification, these algorithms along with the introduced kernel functions are utilized for solving ordinary, partial, integro, and fractional differential equations.On the other hand, nowadays, the real-time and big data applications of support vector algorithms are growing. Consequently, the Compute Unified Device Architecture (CUDA) parallelizing the procedure of support vector algorithms based on orthogonal kernel functions is presented. The book sheds light on how to use support vector algorithms based on orthogonal kernel functions in different situations and gives a significant perspective to all machine learning and scientific machine learning researchers all around the world to utilize fractional orthogonal kernel functions in their pattern recognition or scientific computing problems.
Edité par Springer Nature Singapore, Springer Nature Singapore, 2023
ISBN 10 : 9811965528 ISBN 13 : 9789811965524
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 153,90
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierBuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book contains select chapters on support vector algorithms from different perspectives, including mathematical background, properties of various kernel functions, and several applications. The main focus of this book is on orthogonal kernel functions, and the properties of the classical kernel functions-Chebyshev, Legendre, Gegenbauer, and Jacobi-are reviewed in some chapters. Moreover, the fractional form of these kernel functions is introduced in the same chapters, and for ease of use for these kernel functions, a tutorial on a Python package named ORSVM is presented. The book also exhibits a variety of applications for support vector algorithms, and in addition to the classification, these algorithms along with the introduced kernel functions are utilized for solving ordinary, partial, integro, and fractional differential equations.On the other hand, nowadays, the real-time and big data applications of support vector algorithms are growing. Consequently, the Compute Unified Device Architecture (CUDA) parallelizing the procedure of support vector algorithms based on orthogonal kernel functions is presented. The book sheds light on how to use support vector algorithms based on orthogonal kernel functions in different situations and gives a significant perspective to all machine learning and scientific machine learning researchers all around the world to utilize fractional orthogonal kernel functions in their pattern recognition or scientific computing problems.
EUR 167,27
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierPaperback. Etat : Brand New. 250 pages. 9.25x7.50x9.22 inches. In Stock.
EUR 162,08
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierEtat : New.
Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 178,13
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. pp. 320.
Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 180,18
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New.
Edité par Elsevier Science & Technology, San Francisco, 2025
ISBN 10 : 0443328188 ISBN 13 : 9780443328183
Langue: anglais
Vendeur : CitiRetail, Stevenage, Royaume-Uni
EUR 164,54
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : new. Paperback. Dimensionality Reduction in Machine Learning covers both the mathematical and programming sides of dimension reduction algorithms, comparing them in various aspects. Part One provides an introduction to Machine Learning and the Data Life Cycle, with chapters covering the basic concepts of Machine Learning, essential mathematics for Machine Learning, and the methods and concepts of Feature Selection. Part Two covers Linear Methods for Dimension Reduction, with chapters on Principal Component Analysis and Linear Discriminant Analysis. Part Three covers Non-Linear Methods for Dimension Reduction, with chapters on Linear Local Embedding, Multi-dimensional Scaling, and t-distributed Stochastic Neighbor Embedding.Finally, Part Four covers Deep Learning Methods for Dimension Reduction, with chapters on Feature Extraction and Deep Learning, Autoencoders, and Dimensionality reduction in deep learning through group actions. With this stepwise structure and the applied code examples, readers become able to apply dimension reduction algorithms to different types of data, including tabular, text, and image data. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
EUR 184,76
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierEtat : As New. Unread book in perfect condition.
Vendeur : Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande
EUR 204,91
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierEtat : New.
Vendeur : Revaluation Books, Exeter, Royaume-Uni
EUR 221,32
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierHardcover. Etat : Brand New. 319 pages. 9.25x6.10x9.21 inches. In Stock.
EUR 235,36
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierPaperback. Etat : Brand New. 250 pages. 9.25x7.50x9.22 inches. In Stock.
Edité par Elsevier Science & Technology, San Francisco, 2025
ISBN 10 : 0443328188 ISBN 13 : 9780443328183
Langue: anglais
Vendeur : Grand Eagle Retail, Mason, OH, Etats-Unis
EUR 188,81
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : new. Paperback. Dimensionality Reduction in Machine Learning covers both the mathematical and programming sides of dimension reduction algorithms, comparing them in various aspects. Part One provides an introduction to Machine Learning and the Data Life Cycle, with chapters covering the basic concepts of Machine Learning, essential mathematics for Machine Learning, and the methods and concepts of Feature Selection. Part Two covers Linear Methods for Dimension Reduction, with chapters on Principal Component Analysis and Linear Discriminant Analysis. Part Three covers Non-Linear Methods for Dimension Reduction, with chapters on Linear Local Embedding, Multi-dimensional Scaling, and t-distributed Stochastic Neighbor Embedding.Finally, Part Four covers Deep Learning Methods for Dimension Reduction, with chapters on Feature Extraction and Deep Learning, Autoencoders, and Dimensionality reduction in deep learning through group actions. With this stepwise structure and the applied code examples, readers become able to apply dimension reduction algorithms to different types of data, including tabular, text, and image data. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
EUR 256,73
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierEtat : New.
Edité par Elsevier Science Feb 2025, 2025
ISBN 10 : 0443328188 ISBN 13 : 9780443328183
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 247,94
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Neuware - Dimensionality Reduction in Machine Learning covers both the mathematical and programming sides of dimension reduction algorithms, comparing them in various aspects. Part One provides an introduction to Machine Learning and the Data Life Cycle, with chapters covering the basic concepts of Machine Learning, essential mathematics for Machine Learning, and the methods and concepts of Feature Selection. Part Two covers Linear Methods for Dimension Reduction, with chapters on Principal Component Analysis and Linear Discriminant Analysis. Part Three covers Non-Linear Methods for Dimension Reduction, with chapters on Linear Local Embedding, Multi-dimensional Scaling, and t-distributed Stochastic Neighbor Embedding.Finally, Part Four covers Deep Learning Methods for Dimension Reduction, with chapters on Feature Extraction and Deep Learning, Autoencoders, and Dimensionality reduction in deep learning through group actions. With this stepwise structure and the applied code examples, readers become able to apply dimension reduction algorithms to different types of data, including tabular, text, and image data.
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
EUR 54,54
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierPAP. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
EUR 58,30
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierPAP. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Edité par Springer, Berlin|Springer Nature Singapore|Springer, 2024
ISBN 10 : 9811965552 ISBN 13 : 9789811965555
Langue: anglais
Vendeur : moluna, Greven, Allemagne
EUR 127,40
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierKartoniert / Broschiert. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book contains select chapters on support vector algorithms from different perspectives, including mathematical background, properties of various kernel functions, and several applications. The main focus of this book is on orthogonal kernel function.
Edité par Springer, Berlin|Springer Nature Singapore|Springer, 2023
ISBN 10 : 9811965528 ISBN 13 : 9789811965524
Langue: anglais
Vendeur : moluna, Greven, Allemagne
EUR 127,40
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book contains select chapters on support vector algorithms from different perspectives, including mathematical background, properties of various kernel functions, and several applications. The main focus of this book is on orthogonal kernel function.
Edité par Springer Nature Singapore Mrz 2024, 2024
ISBN 10 : 9811965552 ISBN 13 : 9789811965555
Langue: anglais
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 149,79
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book contains select chapters on support vector algorithms from different perspectives, including mathematical background, properties of various kernel functions, and several applications. The main focus of this book is on orthogonal kernel functions, and the properties of the classical kernel functions-Chebyshev, Legendre, Gegenbauer, and Jacobi-are reviewed in some chapters. Moreover, the fractional form of these kernel functions is introduced in the same chapters, and for ease of use for these kernel functions, a tutorial on a Python package named ORSVM is presented. The book also exhibits a variety of applications for support vector algorithms, and in addition to the classification, these algorithms along with the introduced kernel functions are utilized for solving ordinary, partial, integro, and fractional differential equations.On the other hand, nowadays, the real-time and big data applications of support vector algorithms are growing. Consequently, the Compute Unified Device Architecture (CUDA) parallelizing the procedure of support vector algorithms based on orthogonal kernel functions is presented. The book sheds light on how to use support vector algorithms based on orthogonal kernel functions in different situations and gives a significant perspective to all machine learning and scientific machine learning researchers all around the world to utilize fractional orthogonal kernel functions in their pattern recognition or scientific computing problems. 320 pp. Englisch.
Edité par Springer Nature Singapore Mrz 2023, 2023
ISBN 10 : 9811965528 ISBN 13 : 9789811965524
Langue: anglais
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 149,79
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierBuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book contains select chapters on support vector algorithms from different perspectives, including mathematical background, properties of various kernel functions, and several applications. The main focus of this book is on orthogonal kernel functions, and the properties of the classical kernel functions-Chebyshev, Legendre, Gegenbauer, and Jacobi-are reviewed in some chapters. Moreover, the fractional form of these kernel functions is introduced in the same chapters, and for ease of use for these kernel functions, a tutorial on a Python package named ORSVM is presented. The book also exhibits a variety of applications for support vector algorithms, and in addition to the classification, these algorithms along with the introduced kernel functions are utilized for solving ordinary, partial, integro, and fractional differential equations.On the other hand, nowadays, the real-time and big data applications of support vector algorithms are growing. Consequently, the Compute Unified Device Architecture (CUDA) parallelizing the procedure of support vector algorithms based on orthogonal kernel functions is presented. The book sheds light on how to use support vector algorithms based on orthogonal kernel functions in different situations and gives a significant perspective to all machine learning and scientific machine learning researchers all around the world to utilize fractional orthogonal kernel functions in their pattern recognition or scientific computing problems. 320 pp. Englisch.
Vendeur : Brook Bookstore On Demand, Napoli, NA, Italie
EUR 149,64
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : new. Questo è un articolo print on demand.
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 190,62
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. Print on Demand pp. 320.
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 190,83
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. Print on Demand.
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
EUR 194,02
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. PRINT ON DEMAND pp. 320.