Search preferences
Passer aux résultats principaux de la recherche

Filtres de recherche

Type d'article

  • Tous les types de produits 
  • Livres (13)
  • Magazines & Périodiques (Aucun autre résultat ne correspond à ces critères)
  • Bandes dessinées (Aucun autre résultat ne correspond à ces critères)
  • Partitions de musique (Aucun autre résultat ne correspond à ces critères)
  • Art, Affiches et Gravures (Aucun autre résultat ne correspond à ces critères)
  • Photographies (Aucun autre résultat ne correspond à ces critères)
  • Cartes (Aucun autre résultat ne correspond à ces critères)
  • Manuscrits & Papiers anciens (Aucun autre résultat ne correspond à ces critères)

Etat En savoir plus

  • Neuf (13)
  • Comme neuf, Très bon ou Bon (Aucun autre résultat ne correspond à ces critères)
  • Assez bon ou satisfaisant (Aucun autre résultat ne correspond à ces critères)
  • Moyen ou mauvais (Aucun autre résultat ne correspond à ces critères)
  • Conformément à la description (Aucun autre résultat ne correspond à ces critères)

Reliure

Particularités

  • Ed. originale (Aucun autre résultat ne correspond à ces critères)
  • Signé (Aucun autre résultat ne correspond à ces critères)
  • Jaquette (Aucun autre résultat ne correspond à ces critères)
  • Avec images (8)
  • Sans impressions à la demande (10)

Langue (1)

Prix

  • Tous les prix 
  • Moins de EUR 20 (Aucun autre résultat ne correspond à ces critères)
  • EUR 20 à EUR 45 (Aucun autre résultat ne correspond à ces critères)
  • Plus de EUR 45 
Fourchette de prix personnalisée (EUR)

Livraison gratuite

  • Livraison gratuite à destination de France (Aucun autre résultat ne correspond à ces critères)

Pays

  • Quent, Zephyr

    Edité par Gitforgits 10/30/2024, 2024

    ISBN 10 : 8197950415 ISBN 13 : 9788197950414

    Langue: anglais

    Vendeur : BargainBookStores, Grand Rapids, MI, Etats-Unis

    Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

    Contacter le vendeur

    EUR 47,36

    Autre devise
    EUR 10,79 expédition depuis Etats-Unis vers France

    Destinations, frais et délais

    Quantité disponible : 5 disponible(s)

    Ajouter au panier

    Paperback or Softback. Etat : New. Google JAX Cookbook: Perform machine learning and numerical computing with combined capabilities of TensorFlow and NumPy 0.97. Book.

  • Quent, Zephyr

    Edité par GitforGits, 2024

    ISBN 10 : 8197950415 ISBN 13 : 9788197950414

    Langue: anglais

    Vendeur : California Books, Miami, FL, Etats-Unis

    Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

    Contacter le vendeur

    EUR 51,56

    Autre devise
    EUR 6,90 expédition depuis Etats-Unis vers France

    Destinations, frais et délais

    Quantité disponible : Plus de 20 disponibles

    Ajouter au panier

    Etat : New.

  • Image du vendeur pour Google JAX Cookbook mis en vente par Rarewaves USA

    Zephyr Quent

    Edité par Unknown, IN, 2024

    ISBN 10 : 8197950415 ISBN 13 : 9788197950414

    Langue: anglais

    Vendeur : Rarewaves USA, OSWEGO, IL, Etats-Unis

    Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

    Contacter le vendeur

    EUR 57,55

    Autre devise
    EUR 3,45 expédition depuis Etats-Unis vers France

    Destinations, frais et délais

    Quantité disponible : Plus de 20 disponibles

    Ajouter au panier

    Paperback. Etat : New.

  • Image du vendeur pour Google JAX Cookbook mis en vente par Rarewaves USA United

    Zephyr Quent

    Edité par Unknown, IN, 2024

    ISBN 10 : 8197950415 ISBN 13 : 9788197950414

    Langue: anglais

    Vendeur : Rarewaves USA United, OSWEGO, IL, Etats-Unis

    Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

    Contacter le vendeur

    EUR 59,76

    Autre devise
    EUR 3,45 expédition depuis Etats-Unis vers France

    Destinations, frais et délais

    Quantité disponible : Plus de 20 disponibles

    Ajouter au panier

    Paperback. Etat : New.

  • Zephyr Quent

    Edité par Unknown, IN, 2024

    ISBN 10 : 8197950415 ISBN 13 : 9788197950414

    Langue: anglais

    Vendeur : Rarewaves.com UK, London, Royaume-Uni

    Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

    Contacter le vendeur

    EUR 60,55

    Autre devise
    EUR 2,29 expédition depuis Royaume-Uni vers France

    Destinations, frais et délais

    Quantité disponible : Plus de 20 disponibles

    Ajouter au panier

    Paperback. Etat : New.

  • Quent, Zephyr

    Edité par GitforGits, 2024

    ISBN 10 : 8197950415 ISBN 13 : 9788197950414

    Langue: anglais

    Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni

    Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

    Contacter le vendeur

    EUR 61,65

    Autre devise
    EUR 4,58 expédition depuis Royaume-Uni vers France

    Destinations, frais et délais

    Quantité disponible : Plus de 20 disponibles

    Ajouter au panier

    Etat : New. In.

  • Image du vendeur pour Google JAX Cookbook mis en vente par Rarewaves.com USA

    Zephyr Quent

    Edité par Unknown, IN, 2024

    ISBN 10 : 8197950415 ISBN 13 : 9788197950414

    Langue: anglais

    Vendeur : Rarewaves.com USA, London, LONDO, Royaume-Uni

    Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

    Contacter le vendeur

    EUR 65,15

    Autre devise
    EUR 2,29 expédition depuis Royaume-Uni vers France

    Destinations, frais et délais

    Quantité disponible : Plus de 20 disponibles

    Ajouter au panier

    Paperback. Etat : New.

  • Zephyr Quent

    Edité par Gitforgits, 2024

    ISBN 10 : 8197950415 ISBN 13 : 9788197950414

    Langue: anglais

    Vendeur : CitiRetail, Stevenage, Royaume-Uni

    Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

    Contacter le vendeur

    EUR 66,15

    Autre devise
    EUR 28,68 expédition depuis Royaume-Uni vers France

    Destinations, frais et délais

    Quantité disponible : 1 disponible(s)

    Ajouter au panier

    Paperback. Etat : new. Paperback. This is the practical, solution-oriented book for every data scientists, machine learning engineers, and AI engineers to utilize the most of Google JAX for efficient and advanced machine learning. It covers essential tasks, troubleshooting scenarios, and optimization techniques to address common challenges encountered while working with JAX across machine learning and numerical computing projects.The book starts with the move from NumPy to JAX. It introduces the best ways to speed up computations, handle data types, generate random numbers, and perform in-place operations. It then shows you how to use profiling techniques to monitor computation time and device memory, helping you to optimize training and performance. The debugging section provides clear and effective strategies for resolving common runtime issues, including shape mismatches, NaNs, and control flow errors. The book goes on to show you how to master Pytrees for data manipulation, integrate external functions through the Foreign Function Interface (FFI), and utilize advanced serialization and type promotion techniques for stable computations.If you want to optimize training processes, this book has you covered. It includes recipes for efficient data loading, building custom neural networks, implementing mixed precision, and tracking experiments with Penzai. You'll learn how to visualize model performance and monitor metrics to assess training progress effectively. The recipes in this book tackle real-world scenarios and give users the power to fix issues and fine-tune models quickly.Key LearningsGet your calculations done faster by moving from NumPy to JAX's optimized framework.Make your training pipelines more efficient by profiling how long things take and how much memory they use.Use debugging techniques to fix runtime issues like shape mismatches and numerical instability.Get to grips with Pytrees for managing complex, nested data structures across various machine learning tasks.Use JAX's Foreign Function Interface (FFI) to bring in external functions and give your computational capabilities a boost.Take advantage of mixed-precision training to speed up neural network computations without sacrificing model accuracy.Keep your experiments on track with Penzai. This lets you reproduce results and monitor key metrics.Create your own neural networks and optimizers directly in JAX so you have full control of the architecture.Use serialization techniques to save, load, and transfer models and training checkpoints efficiently.Table of ContentTransition NumPy to JAXProfiling Computation and Device MemoryDebugging Runtime Values and ErrorsMastering Pytrees for Data StructuresExporting and SerializationType Promotion Semantics and Mixed PrecisionIntegrating Foreign Functions (FFI)Training Neural Networks with JAX Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.

  • Zephyr Quent

    Edité par Gitforgits, 2024

    ISBN 10 : 8197950415 ISBN 13 : 9788197950414

    Langue: anglais

    Vendeur : AussieBookSeller, Truganina, VIC, Australie

    Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

    Contacter le vendeur

    EUR 70,59

    Autre devise
    EUR 31,93 expédition depuis Australie vers France

    Destinations, frais et délais

    Quantité disponible : 1 disponible(s)

    Ajouter au panier

    Paperback. Etat : new. Paperback. This is the practical, solution-oriented book for every data scientists, machine learning engineers, and AI engineers to utilize the most of Google JAX for efficient and advanced machine learning. It covers essential tasks, troubleshooting scenarios, and optimization techniques to address common challenges encountered while working with JAX across machine learning and numerical computing projects.The book starts with the move from NumPy to JAX. It introduces the best ways to speed up computations, handle data types, generate random numbers, and perform in-place operations. It then shows you how to use profiling techniques to monitor computation time and device memory, helping you to optimize training and performance. The debugging section provides clear and effective strategies for resolving common runtime issues, including shape mismatches, NaNs, and control flow errors. The book goes on to show you how to master Pytrees for data manipulation, integrate external functions through the Foreign Function Interface (FFI), and utilize advanced serialization and type promotion techniques for stable computations.If you want to optimize training processes, this book has you covered. It includes recipes for efficient data loading, building custom neural networks, implementing mixed precision, and tracking experiments with Penzai. You'll learn how to visualize model performance and monitor metrics to assess training progress effectively. The recipes in this book tackle real-world scenarios and give users the power to fix issues and fine-tune models quickly.Key LearningsGet your calculations done faster by moving from NumPy to JAX's optimized framework.Make your training pipelines more efficient by profiling how long things take and how much memory they use.Use debugging techniques to fix runtime issues like shape mismatches and numerical instability.Get to grips with Pytrees for managing complex, nested data structures across various machine learning tasks.Use JAX's Foreign Function Interface (FFI) to bring in external functions and give your computational capabilities a boost.Take advantage of mixed-precision training to speed up neural network computations without sacrificing model accuracy.Keep your experiments on track with Penzai. This lets you reproduce results and monitor key metrics.Create your own neural networks and optimizers directly in JAX so you have full control of the architecture.Use serialization techniques to save, load, and transfer models and training checkpoints efficiently.Table of ContentTransition NumPy to JAXProfiling Computation and Device MemoryDebugging Runtime Values and ErrorsMastering Pytrees for Data StructuresExporting and SerializationType Promotion Semantics and Mixed PrecisionIntegrating Foreign Functions (FFI)Training Neural Networks with JAX Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.

  • Zephyr Quent

    Edité par Gitforgits, 2024

    ISBN 10 : 8197950415 ISBN 13 : 9788197950414

    Langue: anglais

    Vendeur : Grand Eagle Retail, Mason, OH, Etats-Unis

    Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

    Contacter le vendeur

    EUR 54,84

    Autre devise
    EUR 64,73 expédition depuis Etats-Unis vers France

    Destinations, frais et délais

    Quantité disponible : 1 disponible(s)

    Ajouter au panier

    Paperback. Etat : new. Paperback. This is the practical, solution-oriented book for every data scientists, machine learning engineers, and AI engineers to utilize the most of Google JAX for efficient and advanced machine learning. It covers essential tasks, troubleshooting scenarios, and optimization techniques to address common challenges encountered while working with JAX across machine learning and numerical computing projects.The book starts with the move from NumPy to JAX. It introduces the best ways to speed up computations, handle data types, generate random numbers, and perform in-place operations. It then shows you how to use profiling techniques to monitor computation time and device memory, helping you to optimize training and performance. The debugging section provides clear and effective strategies for resolving common runtime issues, including shape mismatches, NaNs, and control flow errors. The book goes on to show you how to master Pytrees for data manipulation, integrate external functions through the Foreign Function Interface (FFI), and utilize advanced serialization and type promotion techniques for stable computations.If you want to optimize training processes, this book has you covered. It includes recipes for efficient data loading, building custom neural networks, implementing mixed precision, and tracking experiments with Penzai. You'll learn how to visualize model performance and monitor metrics to assess training progress effectively. The recipes in this book tackle real-world scenarios and give users the power to fix issues and fine-tune models quickly.Key LearningsGet your calculations done faster by moving from NumPy to JAX's optimized framework.Make your training pipelines more efficient by profiling how long things take and how much memory they use.Use debugging techniques to fix runtime issues like shape mismatches and numerical instability.Get to grips with Pytrees for managing complex, nested data structures across various machine learning tasks.Use JAX's Foreign Function Interface (FFI) to bring in external functions and give your computational capabilities a boost.Take advantage of mixed-precision training to speed up neural network computations without sacrificing model accuracy.Keep your experiments on track with Penzai. This lets you reproduce results and monitor key metrics.Create your own neural networks and optimizers directly in JAX so you have full control of the architecture.Use serialization techniques to save, load, and transfer models and training checkpoints efficiently.Table of ContentTransition NumPy to JAXProfiling Computation and Device MemoryDebugging Runtime Values and ErrorsMastering Pytrees for Data StructuresExporting and SerializationType Promotion Semantics and Mixed PrecisionIntegrating Foreign Functions (FFI)Training Neural Networks with JAX Shipping may be from multiple locations in the US or from the UK, depending on stock availability.

  • Zephyr Quent

    Edité par Gitforgits Okt 2024, 2024

    ISBN 10 : 8197950415 ISBN 13 : 9788197950414

    Langue: anglais

    Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne

    Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

    Contacter le vendeur

    impression à la demande

    EUR 67,40

    Autre devise
    EUR 11 expédition depuis Allemagne vers France

    Destinations, frais et délais

    Quantité disponible : 2 disponible(s)

    Ajouter au panier

    Taschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This is the practical, solution-oriented book for every data scientists, machine learning engineers, and AI engineers to utilize the most of Google JAX for efficient and advanced machine learning. It covers essential tasks, troubleshooting scenarios, and optimization techniques to address common challenges encountered while working with JAX across machine learning and numerical computing projects.The book starts with the move from NumPy to JAX. It introduces the best ways to speed up computations, handle data types, generate random numbers, and perform in-place operations. It then shows you how to use profiling techniques to monitor computation time and device memory, helping you to optimize training and performance. The debugging section provides clear and effective strategies for resolving common runtime issues, including shape mismatches, NaNs, and control flow errors. The book goes on to show you how to master Pytrees for data manipulation, integrate external functions through the Foreign Function Interface (FFI), and utilize advanced serialization and type promotion techniques for stable computations.If you want to optimize training processes, this book has you covered. It includes recipes for efficient data loading, building custom neural networks, implementing mixed precision, and tracking experiments with Penzai. You'll learn how to visualize model performance and monitor metrics to assess training progress effectively. The recipes in this book tackle real-world scenarios and give users the power to fix issues and fine-tune models quickly.Key LearningsGet your calculations done faster by moving from NumPy to JAX's optimized framework.Make your training pipelines more efficient by profiling how long things take and how much memory they use.Use debugging techniques to fix runtime issues like shape mismatches and numerical instability.Get to grips with Pytrees for managing complex, nested data structures across various machine learning tasks.Use JAX's Foreign Function Interface (FFI) to bring in external functions and give your computational capabilities a boost.Take advantage of mixed-precision training to speed up neural network computations without sacrificing model accuracy.Keep your experiments on track with Penzai. This lets you reproduce results and monitor key metrics.Create your own neural networks and optimizers directly in JAX so you have full control of the architecture.Use serialization techniques to save, load, and transfer models and training checkpoints efficiently.Table of ContentTransition NumPy to JAXProfiling Computation and Device MemoryDebugging Runtime Values and ErrorsMastering Pytrees for Data StructuresExporting and SerializationType Promotion Semantics and Mixed PrecisionIntegrating Foreign Functions (FFI)Training Neural Networks with JAX 252 pp. Englisch.

  • Zephyr Quent

    Edité par Gitforgits Okt 2024, 2024

    ISBN 10 : 8197950415 ISBN 13 : 9788197950414

    Langue: anglais

    Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne

    Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

    Contacter le vendeur

    impression à la demande

    EUR 67,40

    Autre devise
    EUR 15 expédition depuis Allemagne vers France

    Destinations, frais et délais

    Quantité disponible : 1 disponible(s)

    Ajouter au panier

    Taschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -This is the practical, solution-oriented book for every data scientists, machine learning engineers, and AI engineers to utilize the most of Google JAX for efficient and advanced machine learning. It covers essential tasks, troubleshooting scenarios, and optimization techniques to address common challenges encountered while working with JAX across machine learning and numerical computing projects.The book starts with the move from NumPy to JAX. It introduces the best ways to speed up computations, handle data types, generate random numbers, and perform in-place operations. It then shows you how to use profiling techniques to monitor computation time and device memory, helping you to optimize training and performance. The debugging section provides clear and effective strategies for resolving common runtime issues, including shape mismatches, NaNs, and control flow errors. The book goes on to show you how to master Pytrees for data manipulation, integrate external functions through the Foreign Function Interface (FFI), and utilize advanced serialization and type promotion techniques for stable computations.If you want to optimize training processes, this book has you covered. It includes recipes for efficient data loading, building custom neural networks, implementing mixed precision, and tracking experiments with Penzai. You'll learn how to visualize model performance and monitor metrics to assess training progress effectively. The recipes in this book tackle real-world scenarios and give users the power to fix issues and fine-tune models quickly.Key LearningsGet your calculations done faster by moving from NumPy to JAX's optimized framework.Make your training pipelines more efficient by profiling how long things take and how much memory they use.Use debugging techniques to fix runtime issues like shape mismatches and numerical instability.Get to grips with Pytrees for managing complex, nested data structures across various machine learning tasks.Use JAX's Foreign Function Interface (FFI) to bring in external functions and give your computational capabilities a boost.Take advantage of mixed-precision training to speed up neural network computations without sacrificing model accuracy.Keep your experiments on track with Penzai. This lets you reproduce results and monitor key metrics.Create your own neural networks and optimizers directly in JAX so you have full control of the architecture.Use serialization techniques to save, load, and transfer models and training checkpoints efficiently.Table of ContentTransition NumPy to JAXProfiling Computation and Device MemoryDebugging Runtime Values and ErrorsMastering Pytrees for Data StructuresExporting and SerializationType Promotion Semantics and Mixed PrecisionIntegrating Foreign Functions (FFI)Training Neural Networks with JAXLibri GmbH, Europaallee 1, 36244 Bad Hersfeld 252 pp. Englisch.

  • Zephyr Quent

    Edité par Gitforgits, 2024

    ISBN 10 : 8197950415 ISBN 13 : 9788197950414

    Langue: anglais

    Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne

    Évaluation du vendeur 5 sur 5 étoiles Evaluation 5 étoiles, En savoir plus sur les évaluations des vendeurs

    Contacter le vendeur

    impression à la demande

    EUR 76,78

    Autre devise
    EUR 10,99 expédition depuis Allemagne vers France

    Destinations, frais et délais

    Quantité disponible : 2 disponible(s)

    Ajouter au panier

    Taschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This is the practical, solution-oriented book for every data scientists, machine learning engineers, and AI engineers to utilize the most of Google JAX for efficient and advanced machine learning. It covers essential tasks, troubleshooting scenarios, and optimization techniques to address common challenges encountered while working with JAX across machine learning and numerical computing projects.The book starts with the move from NumPy to JAX. It introduces the best ways to speed up computations, handle data types, generate random numbers, and perform in-place operations. It then shows you how to use profiling techniques to monitor computation time and device memory, helping you to optimize training and performance. The debugging section provides clear and effective strategies for resolving common runtime issues, including shape mismatches, NaNs, and control flow errors. The book goes on to show you how to master Pytrees for data manipulation, integrate external functions through the Foreign Function Interface (FFI), and utilize advanced serialization and type promotion techniques for stable computations.If you want to optimize training processes, this book has you covered. It includes recipes for efficient data loading, building custom neural networks, implementing mixed precision, and tracking experiments with Penzai. You'll learn how to visualize model performance and monitor metrics to assess training progress effectively. The recipes in this book tackle real-world scenarios and give users the power to fix issues and fine-tune models quickly.Key LearningsGet your calculations done faster by moving from NumPy to JAX's optimized framework.Make your training pipelines more efficient by profiling how long things take and how much memory they use.Use debugging techniques to fix runtime issues like shape mismatches and numerical instability.Get to grips with Pytrees for managing complex, nested data structures across various machine learning tasks.Use JAX's Foreign Function Interface (FFI) to bring in external functions and give your computational capabilities a boost.Take advantage of mixed-precision training to speed up neural network computations without sacrificing model accuracy.Keep your experiments on track with Penzai. This lets you reproduce results and monitor key metrics.Create your own neural networks and optimizers directly in JAX so you have full control of the architecture.Use serialization techniques to save, load, and transfer models and training checkpoints efficiently.Table of ContentTransition NumPy to JAXProfiling Computation and Device MemoryDebugging Runtime Values and ErrorsMastering Pytrees for Data StructuresExporting and SerializationType Promotion Semantics and Mixed PrecisionIntegrating Foreign Functions (FFI)Training Neural Networks with JAX.