Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 72,22
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Edité par Springer International Publishing AG, CH, 2019
ISBN 10 : 3319701622 ISBN 13 : 9783319701622
Langue: anglais
Vendeur : Rarewaves.com UK, London, Royaume-Uni
EUR 86,03
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierHardback. Etat : New. 2020 ed. This book is a survey and analysis of how deep learning can be used to generate musical content. The authors offer a comprehensive presentation of the foundations of deep learning techniques for music generation. They also develop a conceptual framework used to classify and analyze various types of architecture, encoding models, generation strategies, and ways to control the generation. The five dimensions of this framework are: objective (the kind of musical content to be generated, e.g., melody, accompaniment); representation (the musical elements to be considered and how to encode them, e.g., chord, silence, piano roll, one-hot encoding); architecture (the structure organizing neurons, their connexions, and the flow of their activations, e.g., feedforward, recurrent, variational autoencoder); challenge (the desired properties and issues, e.g., variability, incrementality, adaptability); and strategy (the way to model and control the process of generation, e.g., single-step feedforward, iterative feedforward, decoder feedforward, sampling). To illustrate the possible design decisions and to allow comparison and correlation analysis they analyze and classify more than 40 systems, and they discuss important open challenges such as interactivity, originality, and structure. The authors have extensive knowledge and experience in all related research, technical, performance, and business aspects. The book is suitable for students, practitioners, and researchers in the artificial intelligence, machine learning, and music creation domains. The reader does not require any prior knowledge about artificial neural networks, deep learning, or computer music. The text is fully supported with a comprehensive table of acronyms, bibliography, glossary, and index, and supplementary material is available from the authors' website.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 72,21
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Corner of a Foreign Field, Tokyo, TOKYO, Japon
Edition originale
EUR 79,48
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierHardcover. Etat : Very Good. No Jacket. 1st Edition. 2020.Hardcover.Very good condition.284 pages.Ships from Japan.Usually ships in 1-2 working days.
EUR 77,37
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Edité par Springer International Publishing AG, CH, 2019
ISBN 10 : 3319701622 ISBN 13 : 9783319701622
Langue: anglais
Vendeur : Rarewaves.com USA, London, LONDO, Royaume-Uni
EUR 92,95
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierHardback. Etat : New. 2020 ed. This book is a survey and analysis of how deep learning can be used to generate musical content. The authors offer a comprehensive presentation of the foundations of deep learning techniques for music generation. They also develop a conceptual framework used to classify and analyze various types of architecture, encoding models, generation strategies, and ways to control the generation. The five dimensions of this framework are: objective (the kind of musical content to be generated, e.g., melody, accompaniment); representation (the musical elements to be considered and how to encode them, e.g., chord, silence, piano roll, one-hot encoding); architecture (the structure organizing neurons, their connexions, and the flow of their activations, e.g., feedforward, recurrent, variational autoencoder); challenge (the desired properties and issues, e.g., variability, incrementality, adaptability); and strategy (the way to model and control the process of generation, e.g., single-step feedforward, iterative feedforward, decoder feedforward, sampling). To illustrate the possible design decisions and to allow comparison and correlation analysis they analyze and classify more than 40 systems, and they discuss important open challenges such as interactivity, originality, and structure. The authors have extensive knowledge and experience in all related research, technical, performance, and business aspects. The book is suitable for students, practitioners, and researchers in the artificial intelligence, machine learning, and music creation domains. The reader does not require any prior knowledge about artificial neural networks, deep learning, or computer music. The text is fully supported with a comprehensive table of acronyms, bibliography, glossary, and index, and supplementary material is available from the authors' website.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 78,83
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
EUR 86,18
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Edité par Springer International Publishing, 2019
ISBN 10 : 3319701622 ISBN 13 : 9783319701622
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 149,79
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierBuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This bookis a survey and analysis of how deep learning can be used to generate musicalcontent. The authors offer a comprehensive presentation of the foundations ofdeep learningtechniques for music generation. They also develop a conceptualframework used to classify and analyze various types of architecture, encodingmodels, generation strategies, and ways tocontrol the generation. The five dimensionsof this framework are: objective (the kind of musical content to be generated, e.g.,melody, accompaniment); representation (the musicalelements to be considered andhow to encode them, e.g., chord, silence, piano roll, one-hot encoding);architecture (the structure organizing neurons, their connexions, and the flowof theiractivations, e.g., feedforward, recurrent, variational autoencoder);challenge (the desired properties and issues, e.g., variability,incrementality, adaptability); and strategy (the way to modeland control theprocess of generation, e.g., single-step feedforward, iterative feedforward,decoder feedforward, sampling). To illustrate the possible design decisions andto allowcomparison and correlation analysis they analyze and classify morethan 40 systems, and they discuss important open challenges such as interactivity,originality, and structure. The authorshave extensive knowledge and experience in all related research, technical,performance, and business aspects. The book is suitable for students,practitioners, andresearchersin the artificial intelligence, machine learning, and music creation domains.The reader does not require any prior knowledge about artificial neuralnetworks, deep learning, orcomputer music. The text is fully supported with acomprehensive table of acronyms, bibliography, glossary, and index, andsupplementary material is available from the authors' website.
Edité par Springer International Publishing, Springer International Publishing Nov 2019, 2019
ISBN 10 : 3319701622 ISBN 13 : 9783319701622
Langue: anglais
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 149,79
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierBuch. Etat : Neu. Neuware -This book is a survey and analysis of how deep learning can be used to generate musical content. The authors offer a comprehensive presentation of the foundations of deep learning techniques for music generation. They also develop a conceptual framework used to classify and analyze various types of architecture, encoding models, generation strategies, and ways to control the generation. The five dimensions of this framework are: objective (the kind of musical content to be generated, e.g., melody, accompaniment); representation (the musical elements to be considered and how to encode them, e.g., chord, silence, piano roll, one-hot encoding); architecture (the structure organizing neurons, their connexions, and the flow of their activations, e.g., feedforward, recurrent, variational autoencoder); challenge (the desired properties and issues, e.g., variability, incrementality, adaptability); and strategy (the way to model and control the process of generation, e.g., single-step feedforward, iterative feedforward, decoder feedforward, sampling). To illustrate the possible design decisions and to allow comparison and correlation analysis they analyze and classify more than 40 systems, and they discuss important open challenges such as interactivity, originality, and structure.The authors have extensive knowledge and experience in all related research, technical, performance, and business aspects. The book is suitable for students, practitioners, and researchers in the artificial intelligence, machine learning, and music creation domains. The reader does not require any prior knowledge about artificial neural networks, deep learning, or computer music. The text is fully supported with a comprehensive table of acronyms, bibliography, glossary, and index, and supplementary material is available from the authors' website.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 312 pp. Englisch.
Vendeur : California Books, Miami, FL, Etats-Unis
EUR 167,80
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 167,01
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New.
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
EUR 154,53
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierHardcover. Etat : New. New. book.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
EUR 148,91
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Revaluation Books, Exeter, Royaume-Uni
EUR 221,23
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierHardcover. Etat : Brand New. 312 pages. 9.25x6.10x0.87 inches. In Stock.
Edité par Springer International Publishing, 2019
ISBN 10 : 3319701622 ISBN 13 : 9783319701622
Langue: anglais
Vendeur : moluna, Greven, Allemagne
EUR 127,40
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Authors analysis based on five dimensions: objective, representation, architecture, challenge, and strategyImportant application of deep learning, for AI researchers and composersResearch was conducted within the EU Flow Machines project.
Edité par Springer International Publishing Nov 2019, 2019
ISBN 10 : 3319701622 ISBN 13 : 9783319701622
Langue: anglais
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 149,79
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierBuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This bookis a survey and analysis of how deep learning can be used to generate musicalcontent. The authors offer a comprehensive presentation of the foundations ofdeep learningtechniques for music generation. They also develop a conceptualframework used to classify and analyze various types of architecture, encodingmodels, generation strategies, and ways tocontrol the generation. The five dimensionsof this framework are: objective (the kind of musical content to be generated, e.g.,melody, accompaniment); representation (the musicalelements to be considered andhow to encode them, e.g., chord, silence, piano roll, one-hot encoding);architecture (the structure organizing neurons, their connexions, and the flowof theiractivations, e.g., feedforward, recurrent, variational autoencoder);challenge (the desired properties and issues, e.g., variability,incrementality, adaptability); and strategy (the way to modeland control theprocess of generation, e.g., single-step feedforward, iterative feedforward,decoder feedforward, sampling). To illustrate the possible design decisions andto allowcomparison and correlation analysis they analyze and classify morethan 40 systems, and they discuss important open challenges such as interactivity,originality, and structure. The authorshave extensive knowledge and experience in all related research, technical,performance, and business aspects. The book is suitable for students,practitioners, andresearchersin the artificial intelligence, machine learning, and music creation domains.The reader does not require any prior knowledge about artificial neuralnetworks, deep learning, orcomputer music. The text is fully supported with acomprehensive table of acronyms, bibliography, glossary, and index, andsupplementary material is available from the authors' website. 312 pp. Englisch.
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 178,51
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. Print on Demand.
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
EUR 180,84
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. PRINT ON DEMAND.