Vendeur : Greenway, Chattanooga, TN, Etats-Unis
EUR 31,55
Quantité disponible : 1 disponible(s)
Ajouter au panierpaperback. Etat : Very good condition. very clean,fast ship.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 41,53
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Edité par Packt Publishing 7/29/2022, 2022
ISBN 10 : 1803246154 ISBN 13 : 9781803246154
Langue: anglais
Vendeur : BargainBookStores, Grand Rapids, MI, Etats-Unis
EUR 43,88
Quantité disponible : 5 disponible(s)
Ajouter au panierPaperback or Softback. Etat : New. Applied Machine Learning Explainability Techniques: Make ML models explainable and trustworthy for practical applications using LIME, SHAP, and more. Book.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
EUR 40,76
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 46,70
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Edité par Packt Publishing Limited, GB, 2022
ISBN 10 : 1803246154 ISBN 13 : 9781803246154
Langue: anglais
Vendeur : Rarewaves.com USA, London, LONDO, Royaume-Uni
EUR 58,83
Quantité disponible : Plus de 20 disponibles
Ajouter au panierPaperback. Etat : New. Leverage top XAI frameworks to explain your machine learning models with ease and discover best practices and guidelines to build scalable explainable ML systemsKey FeaturesExplore various explainability methods for designing robust and scalable explainable ML systemsUse XAI frameworks such as LIME and SHAP to make ML models explainable to solve practical problemsDesign user-centric explainable ML systems using guidelines provided for industrial applicationsBook DescriptionExplainable AI (XAI) is an emerging field that brings artificial intelligence (AI) closer to non-technical end users. XAI makes machine learning (ML) models transparent and trustworthy along with promoting AI adoption for industrial and research use cases.Applied Machine Learning Explainability Techniques comes with a unique blend of industrial and academic research perspectives to help you acquire practical XAI skills. You'll begin by gaining a conceptual understanding of XAI and why it's so important in AI. Next, you'll get the practical experience needed to utilize XAI in AI/ML problem-solving processes using state-of-the-art methods and frameworks. Finally, you'll get the essential guidelines needed to take your XAI journey to the next level and bridge the existing gaps between AI and end users.By the end of this ML book, you'll be equipped with best practices in the AI/ML life cycle and will be able to implement XAI methods and approaches using Python to solve industrial problems, successfully addressing key pain points encountered.What you will learnExplore various explanation methods and their evaluation criteriaLearn model explanation methods for structured and unstructured dataApply data-centric XAI for practical problem-solvingHands-on exposure to LIME, SHAP, TCAV, DALEX, ALIBI, DiCE, and othersDiscover industrial best practices for explainable ML systemsUse user-centric XAI to bring AI closer to non-technical end usersAddress open challenges in XAI using the recommended guidelinesWho this book is forThis book is for scientists, researchers, engineers, architects, and managers who are actively engaged in machine learning and related fields. Anyone who is interested in problem-solving using AI will benefit from this book. Foundational knowledge of Python, ML, DL, and data science is recommended. AI/ML experts working with data science, ML, DL, and AI will be able to put their knowledge to work with this practical guide. This book is ideal for you if you're a data and AI scientist, AI/ML engineer, AI/ML product manager, AI product owner, AI/ML researcher, and UX and HCI researcher.
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 46,03
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Edité par Packt Publishing 2022-07, 2022
ISBN 10 : 1803246154 ISBN 13 : 9781803246154
Langue: anglais
Vendeur : Chiron Media, Wallingford, Royaume-Uni
EUR 42,43
Quantité disponible : 10 disponible(s)
Ajouter au panierPF. Etat : New.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 45,32
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 50,29
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
EUR 68,97
Quantité disponible : 1 disponible(s)
Ajouter au panierpaperback. Etat : New. New. book.
EUR 52,76
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Edité par Packt Publishing Limited, GB, 2022
ISBN 10 : 1803246154 ISBN 13 : 9781803246154
Langue: anglais
Vendeur : Rarewaves.com UK, London, Royaume-Uni
EUR 52,79
Quantité disponible : Plus de 20 disponibles
Ajouter au panierPaperback. Etat : New. Leverage top XAI frameworks to explain your machine learning models with ease and discover best practices and guidelines to build scalable explainable ML systemsKey FeaturesExplore various explainability methods for designing robust and scalable explainable ML systemsUse XAI frameworks such as LIME and SHAP to make ML models explainable to solve practical problemsDesign user-centric explainable ML systems using guidelines provided for industrial applicationsBook DescriptionExplainable AI (XAI) is an emerging field that brings artificial intelligence (AI) closer to non-technical end users. XAI makes machine learning (ML) models transparent and trustworthy along with promoting AI adoption for industrial and research use cases.Applied Machine Learning Explainability Techniques comes with a unique blend of industrial and academic research perspectives to help you acquire practical XAI skills. You'll begin by gaining a conceptual understanding of XAI and why it's so important in AI. Next, you'll get the practical experience needed to utilize XAI in AI/ML problem-solving processes using state-of-the-art methods and frameworks. Finally, you'll get the essential guidelines needed to take your XAI journey to the next level and bridge the existing gaps between AI and end users.By the end of this ML book, you'll be equipped with best practices in the AI/ML life cycle and will be able to implement XAI methods and approaches using Python to solve industrial problems, successfully addressing key pain points encountered.What you will learnExplore various explanation methods and their evaluation criteriaLearn model explanation methods for structured and unstructured dataApply data-centric XAI for practical problem-solvingHands-on exposure to LIME, SHAP, TCAV, DALEX, ALIBI, DiCE, and othersDiscover industrial best practices for explainable ML systemsUse user-centric XAI to bring AI closer to non-technical end usersAddress open challenges in XAI using the recommended guidelinesWho this book is forThis book is for scientists, researchers, engineers, architects, and managers who are actively engaged in machine learning and related fields. Anyone who is interested in problem-solving using AI will benefit from this book. Foundational knowledge of Python, ML, DL, and data science is recommended. AI/ML experts working with data science, ML, DL, and AI will be able to put their knowledge to work with this practical guide. This book is ideal for you if you're a data and AI scientist, AI/ML engineer, AI/ML product manager, AI product owner, AI/ML researcher, and UX and HCI researcher.
Edité par Packt Publishing Limited, 2022
ISBN 10 : 1803246154 ISBN 13 : 9781803246154
Langue: anglais
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
EUR 45,81
Quantité disponible : Plus de 20 disponibles
Ajouter au panierPAP. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Edité par Packt Publishing Limited, 2022
ISBN 10 : 1803246154 ISBN 13 : 9781803246154
Langue: anglais
Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
EUR 50,04
Quantité disponible : Plus de 20 disponibles
Ajouter au panierPAP. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Edité par Packt Publishing Limited, 2022
ISBN 10 : 1803246154 ISBN 13 : 9781803246154
Langue: anglais
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
EUR 51,62
Quantité disponible : Plus de 20 disponibles
Ajouter au panierPaperback / softback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 100.
Edité par Packt Publishing, Limited, 2022
ISBN 10 : 1803246154 ISBN 13 : 9781803246154
Langue: anglais
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 79,74
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. Print on Demand pp. 259.
Vendeur : preigu, Osnabrück, Allemagne
EUR 57,50
Quantité disponible : 5 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Applied Machine Learning Explainability Techniques | Make ML models explainable and trustworthy for practical applications using LIME, SHAP, and more | Aditya Bhattacharya | Taschenbuch | Englisch | 2022 | Packt Publishing | EAN 9781803246154 | Verantwortliche Person für die EU: Libri GmbH, Europaallee 1, 36244 Bad Hersfeld, gpsr[at]libri[dot]de | Anbieter: preigu Print on Demand.
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 65,38
Quantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Leverage top XAI frameworks to explain your machine learning models with ease and discover best practices and guidelines to build scalable explainable ML systems Key Features:Explore various explainability methods for designing robust and scalable explainable ML systems Use XAI frameworks such as LIME and SHAP to make ML models explainable to solve practical problems Design user-centric explainable ML systems using guidelines provided for industrial applications Book Description: Explainable AI (XAI) is an emerging field that brings artificial intelligence (AI) closer to non-technical end users. XAI makes machine learning (ML) models transparent and trustworthy along with promoting AI adoption for industrial and research use cases. Applied Machine Learning Explainability Techniques comes with a unique blend of industrial and academic research perspectives to help you acquire practical XAI skills. You'll begin by gaining a conceptual understanding of XAI and why it's so important in AI. Next, you'll get the practical experience needed to utilize XAI in AI/ML problem-solving processes using state-of-the-art methods and frameworks. Finally, you'll get the essential guidelines needed to take your XAI journey to the next level and bridge the existing gaps between AI and end users. By the end of this ML book, you'll be equipped with best practices in the AI/ML life cycle and will be able to implement XAI methods and approaches using Python to solve industrial problems, successfully addressing key pain points encountered. What You Will Learn:Explore various explanation methods and their evaluation criteria Learn model explanation methods for structured and unstructured data Apply data-centric XAI for practical problem-solving Hands-on exposure to LIME, SHAP, TCAV, DALEX, ALIBI, DiCE, and others Discover industrial best practices for explainable ML systems Use user-centric XAI to bring AI closer to non-technical end users Address open challenges in XAI using the recommended guidelines Who this book is for: This book is for scientists, researchers, engineers, architects, and managers who are actively engaged in machine learning and related fields. Anyone who is interested in problem-solving using AI will benefit from this book. Foundational knowledge of Python, ML, DL, and data science is recommended. AI/ML experts working with data science, ML, DL, and AI will be able to put their knowledge to work with this practical guide. This book is ideal for you if you're a data and AI scientist, AI/ML engineer, AI/ML product manager, AI product owner, AI/ML researcher, and UX and HCI researcher.