Edité par Basel, Birkhäuser Verlag, 1995
ISBN 10 : 3764328355 ISBN 13 : 9783764328351
Langue: anglais
Vendeur : Antiquariat Bookfarm, Löbnitz, Allemagne
EUR 16,90
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierSoftcover. VI-160 S. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. Ex-library in GOOD condition with library-signature and stamp(s). Some traces of use. R-16794 9783764328351 Sprache: Englisch Gewicht in Gramm: 550.
Edité par Basel : Birkhäuser (Lectures in Mathematics ETH Zürich), 1995
ISBN 10 : 3764328355 ISBN 13 : 9783764328351
Langue: anglais
Vendeur : Antiquariat Smock, Freiburg, Allemagne
EUR 39
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : Gut. Formateinband: Broschierte Ausgabe VI, 160 S. (24 cm) 1. Aufl.; Gut und sauber erhalten. Sprache: Englisch Gewicht in Gramm: 450 [Stichwörter: David Hilbert, Algebraic Geometry, ; Global analysis; Number theory].
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
EUR 51,91
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Best Price, Torrance, CA, Etats-Unis
EUR 48,26
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierEtat : New. SUPER FAST SHIPPING.
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 58,05
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Edité par Basel. Birkhäuser Verlag., 1995
ISBN 10 : 3764328355 ISBN 13 : 9783764328351
Langue: anglais
Vendeur : Antiquariat Bernhardt, Kassel, Allemagne
EUR 36,26
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierkartoniert. Etat : Sehr gut. Zust: Gutes Exemplar. 160 Seiten, mit Abbildungen, Englisch 322g.
EUR 56,38
Autre deviseQuantité disponible : 10 disponible(s)
Ajouter au panierPF. Etat : New.
Vendeur : Fireside Bookshop, Stroud, GLOS, Royaume-Uni
Membre d'association : PBFA
EUR 47,26
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : Very Good. Type: Book N.B. Small gold label to ffep. Corners a little rubbed.
EUR 74,09
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. pp. 172.
Vendeur : Revaluation Books, Exeter, Royaume-Uni
EUR 76,08
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierPaperback. Etat : Brand New. 1st edition. 168 pages. German language. 9.37x6.61x0.47 inches. In Stock.
EUR 53,49
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - As an interesting object of arithmetic, algebraic and analytic geometry the complex ball was born in a paper of the French Mathematician E. PICARD in 1883. In recent developments the ball finds great interest again in the framework of SHIMURA varieties but also in the theory of diophantine equations (asymptotic FERMAT Problem, see ch. VI). At first glance the original ideas and the advanced theories seem to be rather disconnected. With these lectures I try to build a bridge from the analytic origins to the actual research on effective problems of arithmetic algebraic geometry. The best motivation is HILBERT'S far-reaching program consisting of 23 prob lems (Paris 1900) ' . . . one should succeed in finding and discussing those functions which play the part for any algebraic number field corresponding to that of the exponential function in the field of rational numbers and of the elliptic modular functions in the imaginary quadratic number field'. This message can be found in the 12-th problem 'Extension of KRONECKER'S Theorem on Abelian Fields to Any Algebraic Realm of Rationality' standing in the middle of HILBERTS'S pro gram. It is dedicated to the construction of number fields by means of special value of transcendental functions of several variables. The close connection with three other HILBERT problems will be explained together with corresponding advanced theories, which are necessary to find special effective solutions, namely: 7. Irrationality and Transcendence of Certain Numbers; 21.
Quantité disponible : 2 disponible(s)
Ajouter au panierEtat : Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher.
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 75,88
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. Print on Demand pp. 172 67:B&W 6.69 x 9.61 in or 244 x 170 mm (Pinched Crown) Perfect Bound on White w/Gloss Lam.
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
EUR 78,53
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. PRINT ON DEMAND pp. 172.
Vendeur : moluna, Greven, Allemagne
EUR 48,37
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. As an interesting object of arithmetic, algebraic and analytic geometry the complex ball was born in a paper of the French Mathematician E. PICARD in 1883. In recent developments the ball finds great interest again in the framework of SHIMURA varieties but .
Edité par Springer, Basel, Birkhäuser Basel, Birkhäuser Dez 1994, 1994
ISBN 10 : 3764328355 ISBN 13 : 9783764328351
Langue: anglais
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 85,55
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -As an interesting object of arithmetic, algebraic and analytic geometry the complex ball was born in a paper of the French Mathematician E. PICARD in 1883. In recent developments the ball finds great interest again in the framework of SHIMURA varieties but also in the theory of diophantine equations (asymptotic FERMAT Problem, see ch. VI). At first glance the original ideas and the advanced theories seem to be rather disconnected. With these lectures I try to build a bridge from the analytic origins to the actual research on effective problems of arithmetic algebraic geometry. The best motivation is HILBERT'S far-reaching program consisting of 23 prob lems (Paris 1900) ' . . . one should succeed in finding and discussing those functions which play the part for any algebraic number field corresponding to that of the exponential function in the field of rational numbers and of the elliptic modular functions in the imaginary quadratic number field'. This message can be found in the 12-th problem 'Extension of KRONECKER'S Theorem on Abelian Fields to Any Algebraic Realm of Rationality' standing in the middle of HILBERTS'S pro gram. It is dedicated to the construction of number fields by means of special value of transcendental functions of several variables. The close connection with three other HILBERT problems will be explained together with corresponding advanced theories, which are necessary to find special effective solutions, namely: 7. Irrationality and Transcendence of Certain Numbers; 21. 160 pp. Englisch.
Edité par Birkhäuser Basel, Birkhäuser Basel Dez 1994, 1994
ISBN 10 : 3764328355 ISBN 13 : 9783764328351
Langue: anglais
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 53,49
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -As an interesting object of arithmetic, algebraic and analytic geometry the complex ball was born in a paper of the French Mathematician E. PICARD in 1883. In recent developments the ball finds great interest again in the framework of SHIMURA varieties but also in the theory of diophantine equations (asymptotic FERMAT Problem, see ch. VI). At first glance the original ideas and the advanced theories seem to be rather disconnected. With these lectures I try to build a bridge from the analytic origins to the actual research on effective problems of arithmetic algebraic geometry. The best motivation is HILBERT'S far-reaching program consisting of 23 prob lems (Paris 1900) ' . . . one should succeed in finding and discussing those functions which play the part for any algebraic number field corresponding to that of the exponential function in the field of rational numbers and of the elliptic modular functions in the imaginary quadratic number field'. This message can be found in the 12-th problem 'Extension of KRONECKER'S Theorem on Abelian Fields to Any Algebraic Realm of Rationality' standing in the middle of HILBERTS'S pro gram. It is dedicated to the construction of number fields by means of special value of transcendental functions of several variables. The close connection with three other HILBERT problems will be explained together with corresponding advanced theories, which are necessary to find special effective solutions, namely: 7. Irrationality and Transcendence of Certain Numbers; 21.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 172 pp. Englisch.