EUR 135,85
Quantité disponible : 3 disponible(s)
Ajouter au panierEtat : New.
EUR 129,15
Quantité disponible : 2 disponible(s)
Ajouter au panierPaperback. Etat : Brand New. 350 pages. 9.00x6.00x8.93 inches. In Stock.
EUR 143,29
Quantité disponible : 3 disponible(s)
Ajouter au panierEtat : New.
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
EUR 151,70
Quantité disponible : 3 disponible(s)
Ajouter au panierEtat : New.
Edité par Elsevier - Health Sciences Division, 2025
ISBN 10 : 0443264848 ISBN 13 : 9780443264849
Langue: anglais
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
EUR 146,29
Quantité disponible : Plus de 20 disponibles
Ajouter au panierPaperback / softback. Etat : New. New copy - Usually dispatched within 4 working days. 1000.
Edité par Elsevier - Health Sciences Division, Philadelphia, 2025
ISBN 10 : 0443264848 ISBN 13 : 9780443264849
Langue: anglais
Vendeur : CitiRetail, Stevenage, Royaume-Uni
EUR 139,95
Quantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : new. Paperback. Deep Learning for Multi-Sensor Earth Observation addresses the need for transformative Deep Learning techniques to navigate the complexity of multi-sensor data fusion. With insights drawn from the frontiers of remote sensing technology and AI advancements, it covers the potential of fusing data of varying spatial, spectral, and temporal dimensions from both active and passive sensors. This book offers a concise, yet comprehensive, resource, addressing the challenges of data integration and uncertainty quantification from foundational concepts to advanced applications. Case studies illustrate the practicality of deep learning techniques, while cutting-edge approaches such as self-supervised learning, graph neural networks, and foundation models chart a course for future development.Structured for clarity, the book builds upon its own concepts, leading readers through introductory explanations, sensor-specific insights, and ultimately to advanced concepts and specialized applications. By bridging the gap between theory and practice, this volume equips researchers, geoscientists, and enthusiasts with the knowledge to reshape Earth observation through the dynamic lens of deep learning. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Edité par Elsevier Science Feb 2025, 2025
ISBN 10 : 0443264848 ISBN 13 : 9780443264849
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 210,50
Quantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Neuware - Deep Learning for Multi-Sensor Earth Observation addresses the need for transformative Deep Learning techniques to navigate the complexity of multi-sensor data fusion. With insights drawn from the frontiers of remote sensing technology and AI advancements, it covers the potential of fusing data of varying spatial, spectral, and temporal dimensions from both active and passive sensors. This book offers a concise, yet comprehensive, resource, addressing the challenges of data integration and uncertainty quantification from foundational concepts to advanced applications. Case studies illustrate the practicality of deep learning techniques, while cutting-edge approaches such as self-supervised learning, graph neural networks, and foundation models chart a course for future development.Structured for clarity, the book builds upon its own concepts, leading readers through introductory explanations, sensor-specific insights, and ultimately to advanced concepts and specialized applications. By bridging the gap between theory and practice, this volume equips researchers, geoscientists, and enthusiasts with the knowledge to reshape Earth observation through the dynamic lens of deep learning.
Vendeur : Brook Bookstore On Demand, Napoli, NA, Italie
EUR 125,73
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : new. Questo è un articolo print on demand.