Edité par LAP LAMBERT Academic Publishing, 2010
ISBN 10 : 3843359741 ISBN 13 : 9783843359740
Langue: anglais
Vendeur : moluna, Greven, Allemagne
EUR 48,50
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Edité par LAP LAMBERT Academic Publishing, 2010
ISBN 10 : 3843359741 ISBN 13 : 9783843359740
Langue: anglais
Vendeur : preigu, Osnabrück, Allemagne
EUR 51,05
Quantité disponible : 5 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Frequent Pattern Mining in Transactional and Structured Databases | Different aspects of itemset, sequence and subtree discovery | Renáta Iváncsy | Taschenbuch | 144 S. | Englisch | 2010 | LAP LAMBERT Academic Publishing | EAN 9783843359740 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu.
Edité par LAP LAMBERT Academic Publishing, 2010
ISBN 10 : 3843359741 ISBN 13 : 9783843359740
Langue: anglais
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
EUR 129,37
Quantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : Like New. LIKE NEW. SHIPS FROM MULTIPLE LOCATIONS. book.
Edité par LAP LAMBERT Academic Publishing Okt 2010, 2010
ISBN 10 : 3843359741 ISBN 13 : 9783843359740
Langue: anglais
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 59
Quantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Data mining is a process of discovering hidden relationships in large amounts of data. Frequent pattern discovery is an important research area in the field of data mining. Its purpose is to find patterns which appear frequently in a large collection of data. This work deals with three main areas of frequent pattern mining, namely, frequent itemset, frequent sequence and frequent subtree discovery. Beside providing a brief overview of related works of each single frequent pattern mining problem mentioned before, the three theses offered in this work suggest novel methods for efficient discovery of the different types of frequent patterns. The new methods are compared to the best-known algorithms in the related fields. The performance analysis of the methods involves measurements of the execution time and memory requirements. 144 pp. Englisch.
Edité par LAP LAMBERT Academic Publishing Okt 2010, 2010
ISBN 10 : 3843359741 ISBN 13 : 9783843359740
Langue: anglais
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 59
Quantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -Data mining is a process of discovering hidden relationships in large amounts of data. Frequent pattern discovery is an important research area in the field of data mining. Its purpose is to find patterns which appear frequently in a large collection of data. This work deals with three main areas of frequent pattern mining, namely, frequent itemset, frequent sequence and frequent subtree discovery. Beside providing a brief overview of related works of each single frequent pattern mining problem mentioned before, the three theses offered in this work suggest novel methods for efficient discovery of the different types of frequent patterns. The new methods are compared to the best-known algorithms in the related fields. The performance analysis of the methods involves measurements of the execution time and memory requirements.Books on Demand GmbH, Überseering 33, 22297 Hamburg 144 pp. Englisch.
Edité par LAP LAMBERT Academic Publishing, 2010
ISBN 10 : 3843359741 ISBN 13 : 9783843359740
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 59
Quantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Data mining is a process of discovering hidden relationships in large amounts of data. Frequent pattern discovery is an important research area in the field of data mining. Its purpose is to find patterns which appear frequently in a large collection of data. This work deals with three main areas of frequent pattern mining, namely, frequent itemset, frequent sequence and frequent subtree discovery. Beside providing a brief overview of related works of each single frequent pattern mining problem mentioned before, the three theses offered in this work suggest novel methods for efficient discovery of the different types of frequent patterns. The new methods are compared to the best-known algorithms in the related fields. The performance analysis of the methods involves measurements of the execution time and memory requirements.