Edité par Cambridge University Press, 2010
ISBN 10 : 0521635640 ISBN 13 : 9780521635646
Langue: anglais
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 62,98
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Edité par Cambridge University Press, 2001
Langue: anglais
Vendeur : Chiemgauer Internet Antiquariat GbR, Altenmarkt, BAY, Allemagne
Edition originale
EUR 58
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierOriginalbroschur. 25cm. Etat : Wie neu. First published. XVII,459 pages. INDEX. In EXCELLENT shape. Sprache: Englisch Gewicht in Gramm: 650.
Edité par Cambridge University Press, 2010
ISBN 10 : 0521635640 ISBN 13 : 9780521635646
Langue: anglais
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 75,58
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Edité par Cambridge University Press 2010-08-02, 2010
ISBN 10 : 0521635640 ISBN 13 : 9780521635646
Langue: anglais
Vendeur : Chiron Media, Wallingford, Royaume-Uni
EUR 64,18
Autre deviseQuantité disponible : 10 disponible(s)
Ajouter au panierPaperback. Etat : New.
Edité par Cambridge University Press, 2010
ISBN 10 : 0521635640 ISBN 13 : 9780521635646
Langue: anglais
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
EUR 80,91
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Edité par Cambridge University Press, 2010
ISBN 10 : 0521635640 ISBN 13 : 9780521635646
Langue: anglais
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 70,46
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Edité par Cambridge University Press, 2010
ISBN 10 : 0521635640 ISBN 13 : 9780521635646
Langue: anglais
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 67,19
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Edité par Cambridge University Press, 2010
ISBN 10 : 0521635640 ISBN 13 : 9780521635646
Langue: anglais
Vendeur : California Books, Miami, FL, Etats-Unis
EUR 90,82
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Edité par Cambridge University Press, 2010
ISBN 10 : 0521635640 ISBN 13 : 9780521635646
Langue: anglais
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 77,04
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Edité par Cambridge University Press, Cambridge, 2001
ISBN 10 : 0521635640 ISBN 13 : 9780521635646
Langue: anglais
Vendeur : Grand Eagle Retail, Fairfield, OH, Etats-Unis
Edition originale
EUR 97,98
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : new. Paperback. This book develops the theory of global attractors for a class of parabolic PDEs which includes reaction-diffusion equations and the Navier-Stokes equations, two examples that are treated in detail. A lengthy chapter on Sobolev spaces provides the framework that allows a rigorous treatment of existence and uniqueness of solutions for both linear time-independent problems (Poisson's equation) and the nonlinear evolution equations which generate the infinite-dimensional dynamical systems of the title. Attention then switches to the global attractor, a finite-dimensional subset of the infinite-dimensional phase space which determines the asymptotic dynamics. In particular, the concluding chapters investigate in what sense the dynamics restricted to the attractor are themselves 'finite-dimensional'. The book is intended as a didactic text for first year graduates, and assumes only a basic knowledge of Banach and Hilbert spaces, and a working understanding of the Lebesgue integral. This book develops the theory of global attractors for a class of parabolic PDEs that includes reaction-diffusion equations and the Navier-Stokes equations, two examples that are treated in detail. A lengthy chapter on Sobolev spaces provides the framework that allows a rigorous treatment of existence and uniqueness of solutions for both linear time-independent problems (Poisson's equation) and the nonlinear evolution equations which generate the infinite-dimensional dynamical systemss of the title. Attention then switches to the global attractor, a finite-dimensional subset of the infinite-dimensional phase space which determines the asymptotic dynamics. In particular, the concluding chapters investigate in what sense the dynamics restricted to the attractor are themselves "finite-dimensional." The book is intended as a didactic text for first year graduates, and assumes only a basic knowledge of Banach and Hilbert spaces, and a working understanding of the Lebesgue integral. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Edité par Cambridge University Press, 2010
ISBN 10 : 0521635640 ISBN 13 : 9780521635646
Langue: anglais
Vendeur : HPB-Red, Dallas, TX, Etats-Unis
EUR 112,18
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierpaperback. Etat : Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority!
Edité par Cambridge University Press, Cambridge, 2001
ISBN 10 : 0521635640 ISBN 13 : 9780521635646
Langue: anglais
Vendeur : CitiRetail, Stevenage, Royaume-Uni
Edition originale
EUR 75,18
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : new. Paperback. This book develops the theory of global attractors for a class of parabolic PDEs which includes reaction-diffusion equations and the Navier-Stokes equations, two examples that are treated in detail. A lengthy chapter on Sobolev spaces provides the framework that allows a rigorous treatment of existence and uniqueness of solutions for both linear time-independent problems (Poisson's equation) and the nonlinear evolution equations which generate the infinite-dimensional dynamical systems of the title. Attention then switches to the global attractor, a finite-dimensional subset of the infinite-dimensional phase space which determines the asymptotic dynamics. In particular, the concluding chapters investigate in what sense the dynamics restricted to the attractor are themselves 'finite-dimensional'. The book is intended as a didactic text for first year graduates, and assumes only a basic knowledge of Banach and Hilbert spaces, and a working understanding of the Lebesgue integral. This book develops the theory of global attractors for a class of parabolic PDEs that includes reaction-diffusion equations and the Navier-Stokes equations, two examples that are treated in detail. A lengthy chapter on Sobolev spaces provides the framework that allows a rigorous treatment of existence and uniqueness of solutions for both linear time-independent problems (Poisson's equation) and the nonlinear evolution equations which generate the infinite-dimensional dynamical systemss of the title. Attention then switches to the global attractor, a finite-dimensional subset of the infinite-dimensional phase space which determines the asymptotic dynamics. In particular, the concluding chapters investigate in what sense the dynamics restricted to the attractor are themselves "finite-dimensional." The book is intended as a didactic text for first year graduates, and assumes only a basic knowledge of Banach and Hilbert spaces, and a working understanding of the Lebesgue integral. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Edité par Cambridge University Press, 2010
ISBN 10 : 0521635640 ISBN 13 : 9780521635646
Langue: anglais
Vendeur : BennettBooksLtd, North Las Vegas, NV, Etats-Unis
EUR 122,77
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierpaperback. Etat : New. In shrink wrap. Looks like an interesting title!
Edité par Cambridge University Press, 2010
ISBN 10 : 0521635640 ISBN 13 : 9780521635646
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 111,31
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book treats the theory of global attractors, a recent development in the theory of partial differential equations.
Edité par Cambridge University Press, Cambridge, 2001
ISBN 10 : 0521635640 ISBN 13 : 9780521635646
Langue: anglais
Vendeur : AussieBookSeller, Truganina, VIC, Australie
Edition originale
EUR 134,67
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : new. Paperback. This book develops the theory of global attractors for a class of parabolic PDEs which includes reaction-diffusion equations and the Navier-Stokes equations, two examples that are treated in detail. A lengthy chapter on Sobolev spaces provides the framework that allows a rigorous treatment of existence and uniqueness of solutions for both linear time-independent problems (Poisson's equation) and the nonlinear evolution equations which generate the infinite-dimensional dynamical systems of the title. Attention then switches to the global attractor, a finite-dimensional subset of the infinite-dimensional phase space which determines the asymptotic dynamics. In particular, the concluding chapters investigate in what sense the dynamics restricted to the attractor are themselves 'finite-dimensional'. The book is intended as a didactic text for first year graduates, and assumes only a basic knowledge of Banach and Hilbert spaces, and a working understanding of the Lebesgue integral. This book develops the theory of global attractors for a class of parabolic PDEs that includes reaction-diffusion equations and the Navier-Stokes equations, two examples that are treated in detail. A lengthy chapter on Sobolev spaces provides the framework that allows a rigorous treatment of existence and uniqueness of solutions for both linear time-independent problems (Poisson's equation) and the nonlinear evolution equations which generate the infinite-dimensional dynamical systemss of the title. Attention then switches to the global attractor, a finite-dimensional subset of the infinite-dimensional phase space which determines the asymptotic dynamics. In particular, the concluding chapters investigate in what sense the dynamics restricted to the attractor are themselves "finite-dimensional." The book is intended as a didactic text for first year graduates, and assumes only a basic knowledge of Banach and Hilbert spaces, and a working understanding of the Lebesgue integral. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Edité par Cambridge University Press, 2001
ISBN 10 : 0521632048 ISBN 13 : 9780521632041
Langue: anglais
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 153,72
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Edité par Cambridge University Press, 2001
ISBN 10 : 0521632048 ISBN 13 : 9780521632041
Langue: anglais
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
EUR 194,76
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Edité par Cambridge University Press, Cambridge, 2001
ISBN 10 : 0521632048 ISBN 13 : 9780521632041
Langue: anglais
Vendeur : CitiRetail, Stevenage, Royaume-Uni
Edition originale
EUR 161,89
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierHardcover. Etat : new. Hardcover. This book develops the theory of global attractors for a class of parabolic PDEs that includes reaction-diffusion equations and the Navier-Stokes equations, two examples that are treated in detail. A lengthy chapter on Sobolev spaces provides the framework that allows a rigorous treatment of existence and uniqueness of solutions for both linear time-independent problems (Poisson's equation) and the nonlinear evolution equations which generate the infinite-dimensional dynamical systemss of the title. Attention then switches to the global attractor, a finite-dimensional subset of the infinite-dimensional phase space which determines the asymptotic dynamics. In particular, the concluding chapters investigate in what sense the dynamics restricted to the attractor are themselves "finite-dimensional." The book is intended as a didactic text for first year graduates, and assumes only a basic knowledge of Banach and Hilbert spaces, and a working understanding of the Lebesgue integral. This book develops the theory of global attractors for a class of parabolic PDEs that includes reaction-diffusion equations and the Navier-Stokes equations, two examples that are treated in detail. A lengthy chapter on Sobolev spaces provides the framework that allows a rigorous treatment of existence and uniqueness of solutions for both linear time-independent problems (Poisson's equation) and the nonlinear evolution equations which generate the infinite-dimensional dynamical systemss of the title. Attention then switches to the global attractor, a finite-dimensional subset of the infinite-dimensional phase space which determines the asymptotic dynamics. In particular, the concluding chapters investigate in what sense the dynamics restricted to the attractor are themselves "finite-dimensional." The book is intended as a didactic text for first year graduates, and assumes only a basic knowledge of Banach and Hilbert spaces, and a working understanding of the Lebesgue integral. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability.
Edité par Cambridge University Press, 2001
ISBN 10 : 0521632048 ISBN 13 : 9780521632041
Langue: anglais
Vendeur : California Books, Miami, FL, Etats-Unis
EUR 218,88
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Edité par Cambridge University Press, Cambridge, 2001
ISBN 10 : 0521632048 ISBN 13 : 9780521632041
Langue: anglais
Vendeur : Grand Eagle Retail, Fairfield, OH, Etats-Unis
Edition originale
EUR 231,70
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierHardcover. Etat : new. Hardcover. This book develops the theory of global attractors for a class of parabolic PDEs that includes reaction-diffusion equations and the Navier-Stokes equations, two examples that are treated in detail. A lengthy chapter on Sobolev spaces provides the framework that allows a rigorous treatment of existence and uniqueness of solutions for both linear time-independent problems (Poisson's equation) and the nonlinear evolution equations which generate the infinite-dimensional dynamical systemss of the title. Attention then switches to the global attractor, a finite-dimensional subset of the infinite-dimensional phase space which determines the asymptotic dynamics. In particular, the concluding chapters investigate in what sense the dynamics restricted to the attractor are themselves "finite-dimensional." The book is intended as a didactic text for first year graduates, and assumes only a basic knowledge of Banach and Hilbert spaces, and a working understanding of the Lebesgue integral. This book develops the theory of global attractors for a class of parabolic PDEs that includes reaction-diffusion equations and the Navier-Stokes equations, two examples that are treated in detail. A lengthy chapter on Sobolev spaces provides the framework that allows a rigorous treatment of existence and uniqueness of solutions for both linear time-independent problems (Poisson's equation) and the nonlinear evolution equations which generate the infinite-dimensional dynamical systemss of the title. Attention then switches to the global attractor, a finite-dimensional subset of the infinite-dimensional phase space which determines the asymptotic dynamics. In particular, the concluding chapters investigate in what sense the dynamics restricted to the attractor are themselves "finite-dimensional." The book is intended as a didactic text for first year graduates, and assumes only a basic knowledge of Banach and Hilbert spaces, and a working understanding of the Lebesgue integral. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Edité par Cambridge University Press, 2001
ISBN 10 : 0521632048 ISBN 13 : 9780521632041
Langue: anglais
Vendeur : Mispah books, Redhill, SURRE, Royaume-Uni
EUR 207,39
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierHardcover. Etat : Like New. Like New. book.
Edité par Cambridge University Press, 2001
ISBN 10 : 0521632048 ISBN 13 : 9780521632041
Langue: anglais
Vendeur : Russell Books, Victoria, BC, Canada
Edition originale
EUR 250,13
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierHardcover. Etat : New. 1st Edition. Special order direct from the distributor.
Edité par Cambridge University Press, Cambridge, 2001
ISBN 10 : 0521632048 ISBN 13 : 9780521632041
Langue: anglais
Vendeur : AussieBookSeller, Truganina, VIC, Australie
Edition originale
EUR 238
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierHardcover. Etat : new. Hardcover. This book develops the theory of global attractors for a class of parabolic PDEs that includes reaction-diffusion equations and the Navier-Stokes equations, two examples that are treated in detail. A lengthy chapter on Sobolev spaces provides the framework that allows a rigorous treatment of existence and uniqueness of solutions for both linear time-independent problems (Poisson's equation) and the nonlinear evolution equations which generate the infinite-dimensional dynamical systemss of the title. Attention then switches to the global attractor, a finite-dimensional subset of the infinite-dimensional phase space which determines the asymptotic dynamics. In particular, the concluding chapters investigate in what sense the dynamics restricted to the attractor are themselves "finite-dimensional." The book is intended as a didactic text for first year graduates, and assumes only a basic knowledge of Banach and Hilbert spaces, and a working understanding of the Lebesgue integral. This book develops the theory of global attractors for a class of parabolic PDEs that includes reaction-diffusion equations and the Navier-Stokes equations, two examples that are treated in detail. A lengthy chapter on Sobolev spaces provides the framework that allows a rigorous treatment of existence and uniqueness of solutions for both linear time-independent problems (Poisson's equation) and the nonlinear evolution equations which generate the infinite-dimensional dynamical systemss of the title. Attention then switches to the global attractor, a finite-dimensional subset of the infinite-dimensional phase space which determines the asymptotic dynamics. In particular, the concluding chapters investigate in what sense the dynamics restricted to the attractor are themselves "finite-dimensional." The book is intended as a didactic text for first year graduates, and assumes only a basic knowledge of Banach and Hilbert spaces, and a working understanding of the Lebesgue integral. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability.
Vendeur : Revaluation Books, Exeter, Royaume-Uni
EUR 290,11
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierHardcover. Etat : Brand New. 1st edition. 461 pages. 9.25x6.25x1.00 inches. In Stock.
Edité par Cambridge University Press, 2001
ISBN 10 : 0521632048 ISBN 13 : 9780521632041
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 264,81
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierBuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - This book develops the theory of global attractors for a class of parabolic PDEs that includes reaction-diffusion equations and the Navier-Stokes equations, two examples that are treated in detail. A lengthy chapter on Sobolev spaces provides the framework that allows a rigorous treatment of existence and uniqueness of solutions for both linear time-independent problems (Poisson's equation) and the nonlinear evolution equations which generate the infinite-dimensional dynamical systemss of the title. Attention then switches to the global attractor, a finite-dimensional subset of the infinite-dimensional phase space which determines the asymptotic dynamics. In particular, the concluding chapters investigate in what sense the dynamics restricted to the attractor are themselves 'finite-dimensional.' The book is intended as a didactic text for first year graduates, and assumes only a basic knowledge of Banach and Hilbert spaces, and a working understanding of the Lebesgue integral.
Vendeur : Revaluation Books, Exeter, Royaume-Uni
EUR 82,52
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : Brand New. 1st edition. 480 pages. 6.00x9.25x1.25 inches. In Stock. This item is printed on demand.
Edité par Cambridge University Press, 2010
ISBN 10 : 0521635640 ISBN 13 : 9780521635646
Langue: anglais
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
EUR 80,31
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierPaperback / softback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 730.
Edité par Cambridge University Press, 2001
ISBN 10 : 0521632048 ISBN 13 : 9780521632041
Langue: anglais
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
EUR 179,49
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierHardback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 900.
Vendeur : Revaluation Books, Exeter, Royaume-Uni
EUR 197,47
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierHardcover. Etat : Brand New. 1st edition. 461 pages. 9.25x6.25x1.00 inches. In Stock. This item is printed on demand.