Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 40,47
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In English.
EUR 38,30
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : NEW.
Edité par Springer International Publishing, 2009
ISBN 10 : 3031004205 ISBN 13 : 9783031004209
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 35,30
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Semi-supervised learning is a learning paradigm concerned with the study of how computers and natural systems such as humans learn in the presence of both labeled and unlabeled data. Traditionally, learning has been studied either in the unsupervised paradigm (e.g., clustering, outlier detection) where all the data are unlabeled, or in the supervised paradigm (e.g., classification, regression) where all the data are labeled. The goal of semi-supervised learning is to understand how combining labeled and unlabeled data may change the learning behavior, and design algorithms that take advantage of such a combination. Semi-supervised learning is of great interest in machine learning and data mining because it can use readily available unlabeled data to improve supervised learning tasks when the labeled data are scarce or expensive. Semi-supervised learning also shows potential as a quantitative tool to understand human category learning, where most of the input is self-evidently unlabeled. In this introductory book, we present some popular semi-supervised learning models, including self-training, mixture models, co-training and multiview learning, graph-based methods, and semi-supervised support vector machines. For each model, we discuss its basic mathematical formulation. The success of semi-supervised learning depends critically on some underlying assumptions. We emphasize the assumptions made by each model and give counterexamples when appropriate to demonstrate the limitations of the different models. In addition, we discuss semi-supervised learning for cognitive psychology. Finally, we give a computational learning theoretic perspective on semi-supervised learning, and we conclude the book with a brief discussion of open questions in the field. Table of Contents: Introduction to Statistical Machine Learning / Overview of Semi-Supervised Learning / Mixture Models and EM / Co-Training / Graph-Based Semi-Supervised Learning / Semi-Supervised Support Vector Machines/ Human Semi-Supervised Learning / Theory and Outlook.
Edité par Springer International Publishing AG, 2009
ISBN 10 : 3031004205 ISBN 13 : 9783031004209
Langue: anglais
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
EUR 42,47
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierPAP. Etat : New. New Book. Shipped from UK. Established seller since 2000.
Vendeur : Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande
EUR 44,15
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : New. 2009. Paperback. . . . . .
Edité par Morgan and Claypool Publishers, 2009
ISBN 10 : 1598295470 ISBN 13 : 9781598295474
Langue: anglais
Vendeur : Greener Books, London, Royaume-Uni
EUR 41,80
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : Used; Very Good. stains on pages and the side **SHIPPED FROM UK** We believe you will be completely satisfied with our quick and reliable service. All orders are dispatched as swiftly as possible! Buy with confidence! Greener Books.
Vendeur : BargainBookStores, Grand Rapids, MI, Etats-Unis
EUR 40,18
Autre deviseQuantité disponible : 5 disponible(s)
Ajouter au panierPaperback or Softback. Etat : New. Introduction to Semi-Supervised Learning 0.53. Book.
Edité par Springer, Berlin|Springer International Publishing|Morgan & Claypool|Springer, 2009
ISBN 10 : 3031004205 ISBN 13 : 9783031004209
Langue: anglais
Vendeur : moluna, Greven, Allemagne
EUR 42,04
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : New. Semi-supervised learning is a learning paradigm concerned with the study of how computers and natural systems such as humans learn in the presence of both labeled and unlabeled data. Traditionally, learning has been studied either in the unsupervised paradi.
EUR 37,80
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : New.
EUR 37,80
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : As New. Unread book in perfect condition.
EUR 38,28
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : New.
EUR 53,90
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : New. 2009. Paperback. . . . . . Books ship from the US and Ireland.
Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 49,69
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. 1st edition NO-PA16APR2015-KAP.
EUR 41,38
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : As New. Unread book in perfect condition.
Edité par Springer International Publishing Jun 2009, 2009
ISBN 10 : 3031004205 ISBN 13 : 9783031004209
Langue: anglais
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 35,30
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Semi-supervised learning is a learning paradigm concerned with the study of how computers and natural systems such as humans learn in the presence of both labeled and unlabeled data. Traditionally, learning has been studied either in the unsupervised paradigm (e.g., clustering, outlier detection) where all the data are unlabeled, or in the supervised paradigm (e.g., classification, regression) where all the data are labeled. The goal of semi-supervised learning is to understand how combining labeled and unlabeled data may change the learning behavior, and design algorithms that take advantage of such a combination. Semi-supervised learning is of great interest in machine learning and data mining because it can use readily available unlabeled data to improve supervised learning tasks when the labeled data are scarce or expensive. Semi-supervised learning also shows potential as a quantitative tool to understand human category learning, where most of the input is self-evidently unlabeled. In this introductory book, we present some popular semi-supervised learning models, including self-training, mixture models, co-training and multiview learning, graph-based methods, and semi-supervised support vector machines. For each model, we discuss its basic mathematical formulation. The success of semi-supervised learning depends critically on some underlying assumptions. We emphasize the assumptions made by each model and give counterexamples when appropriate to demonstrate the limitations of the different models. In addition, we discuss semi-supervised learning for cognitive psychology. Finally, we give a computational learning theoretic perspective on semi-supervised learning, and we conclude the book with a brief discussion of open questions in the field. Table of Contents: Introduction to Statistical Machine Learning / Overview of Semi-Supervised Learning / Mixture Models and EM / Co-Training / Graph-Based Semi-Supervised Learning / Semi-Supervised Support Vector Machines / Human Semi-Supervised Learning / Theory and Outlook 132 pp. Englisch.
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 49,03
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. Print on Demand.
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
EUR 51,65
Autre deviseQuantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. PRINT ON DEMAND.