EUR 51,75
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Feldman's Books, Menlo Park, CA, Etats-Unis
EUR 52,14
Quantité disponible : 1 disponible(s)
Ajouter au panierPaper Bound. Etat : Near Fine. First Edition. Clean, unmarked copy.
EUR 59,10
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
EUR 22,90
Quantité disponible : 1 disponible(s)
Ajouter au panierSoftcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. C-02794 3540960597 Sprache: Englisch Gewicht in Gramm: 1050.
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 58,12
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
EUR 56,20
Quantité disponible : 10 disponible(s)
Ajouter au panierPF. Etat : New.
EUR 75,06
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. pp. 280.
EUR 77,08
Quantité disponible : 2 disponible(s)
Ajouter au panierPaperback. Etat : Brand New. 280 pages. 9.10x5.90x0.50 inches. In Stock.
EUR 48,37
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Langue: anglais
Edité par Springer New York, Springer US, 1984
ISBN 10 : 0387960597 ISBN 13 : 9780387960593
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 58,39
Quantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Some problems of mathematical physics and analysis can be formulated as the problem of solving the equation f EUR F, (1) Au = f, where A: DA C U + F is an operator with a non-empty domain of definition D , in a metric space U, with range in a metric space F. The metrics A on U and F will be denoted by P and P ' respectively. Relative u F to the twin spaces U and F, J. Hadamard P-06] gave the following defini tion of correctness: the problem (1) is said to be well-posed (correct, properly posed) if the following conditions are satisfied: (1) The range of the value Q of the operator A coincides with A F ('sol vabi li ty' condition); (2) The equality AU = AU for any u ,u EUR DA implies the I 2 l 2 equality u = u ('uniqueness' condition); l 2 (3) The inverse operator A-I is continuous on F ('stability' condition). Any reasonable mathematical formulation of a physical problem requires that conditions (1)-(3) be satisfied. That is why Hadamard postulated that any 'ill-posed' (improperly posed) problem, that is to say, one which does not satisfy conditions (1)-(3), is non-physical. Hadamard also gave the now classical example of an ill-posed problem, namely, the Cauchy problem for the Laplace equation.
Langue: anglais
Edité par Springer, Springer Nov 1984, 1984
ISBN 10 : 0387960597 ISBN 13 : 9780387960593
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 53,49
Quantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Some problems of mathematical physics and analysis can be formulated as the problem of solving the equation f EUR F, (1) Au = f, where A: DA C U + F is an operator with a non-empty domain of definition D , in a metric space U, with range in a metric space F. The metrics A on U and F will be denoted by P and P ' respectively. Relative u F to the twin spaces U and F, J. Hadamard P-06] gave the following defini tion of correctness: the problem (1) is said to be well-posed (correct, properly posed) if the following conditions are satisfied: (1) The range of the value Q of the operator A coincides with A F ('sol vabi li ty' condition); (2) The equality AU = AU for any u ,u EUR DA implies the I 2 l 2 equality u = u ('uniqueness' condition); l 2 (3) The inverse operator A-I is continuous on F ('stability' condition). Any reasonable mathematical formulation of a physical problem requires that conditions (1)-(3) be satisfied. That is why Hadamard postulated that any 'ill-posed' (improperly posed) problem, that is to say, one which does not satisfy conditions (1)-(3), is non-physical. Hadamard also gave the now classical example of an ill-posed problem, namely, the Cauchy problem for the Laplace equation. 280 pp. Englisch.
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 73,07
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. Print on Demand pp. 280 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam.
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
EUR 75,84
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. PRINT ON DEMAND pp. 280.
Langue: anglais
Edité par Springer New York, Springer US Nov 1984, 1984
ISBN 10 : 0387960597 ISBN 13 : 9780387960593
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 53,49
Quantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -Some problems of mathematical physics and analysis can be formulated as the problem of solving the equation f ¿ F, (1) Au = f, where A: DA C U + F is an operator with a non-empty domain of definition D , in a metric space U, with range in a metric space F. The metrics A on U and F will be denoted by P and P ' respectively. Relative u F to the twin spaces U and F, J. Hadamard P-06] gave the following defini tion of correctness: the problem (1) is said to be well-posed (correct, properly posed) if the following conditions are satisfied: (1) The range of the value Q of the operator A coincides with A F ('sol vabi li ty' condition); (2) The equality AU = AU for any u ,u ¿ DA implies the I 2 l 2 equality u = u ('uniqueness' condition); l 2 (3) The inverse operator A-I is continuous on F ('stability' condition). Any reasonable mathematical formulation of a physical problem requires that conditions (1)-(3) be satisfied. That is why Hadamard postulated that any 'ill-posed' (improperly posed) problem, that is to say, one which does not satisfy conditions (1)-(3), is non-physical. Hadamard also gave the now classical example of an ill-posed problem, namely, the Cauchy problem for the Laplace equation.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 280 pp. Englisch.