Edité par LAP LAMBERT Academic Publishing, 2016
ISBN 10 : 3659827770 ISBN 13 : 9783659827778
Langue: anglais
Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 106,75
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New.
Edité par LAP LAMBERT Academic Publishing, 2016
ISBN 10 : 3659827770 ISBN 13 : 9783659827778
Langue: anglais
Vendeur : preigu, Osnabrück, Allemagne
EUR 61,60
Quantité disponible : 5 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Some Properties of H-function of Two Variables with Applications | Yashwant Singh (u. a.) | Taschenbuch | 180 S. | Englisch | 2016 | LAP LAMBERT Academic Publishing | EAN 9783659827778 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu.
Edité par LAP LAMBERT Academic Publishing Mai 2016, 2016
ISBN 10 : 3659827770 ISBN 13 : 9783659827778
Langue: anglais
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 71,90
Quantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Neuware -The authors have established some differential formulae for the -function of two variables . The integrand of the main integral evaluated in this chapter consists of product of the -function of two variables and a class of double Barnes integral. The evaluation of four integrals of -function of two variables proposed by Singh and Mandia (2013) and their applications in deriving double half-range Fourier series for the -function of two variables. A multiple integral and a multiple half-range Fourier series of the -function of two variables are derived analogous to the double integral and double half-range Fourier series of the -function of two variables. We have evaluated an integral involving an exponential function, Sine function, generalized hypergeometric series and -function of two variables. We have introduced an even function on the interval and investigate an integral formula to evaluate the Fourier cosine series involving products of general class of multivariable polynomials (1987) and multivariable -functions due to Gautam (1986).Books on Demand GmbH, Überseering 33, 22297 Hamburg 180 pp. Englisch.
Edité par LAP LAMBERT Academic Publishing, 2016
ISBN 10 : 3659827770 ISBN 13 : 9783659827778
Langue: anglais
Vendeur : Revaluation Books, Exeter, Royaume-Uni
EUR 124,89
Quantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : Brand New. 180 pages. 8.66x5.91x0.41 inches. In Stock.
Edité par LAP LAMBERT Academic Publishing Mai 2016, 2016
ISBN 10 : 3659827770 ISBN 13 : 9783659827778
Langue: anglais
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 71,90
Quantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The authors have established some differential formulae for the -function of two variables . The integrand of the main integral evaluated in this chapter consists of product of the -function of two variables and a class of double Barnes integral. The evaluation of four integrals of -function of two variables proposed by Singh and Mandia (2013) and their applications in deriving double half-range Fourier series for the -function of two variables. A multiple integral and a multiple half-range Fourier series of the -function of two variables are derived analogous to the double integral and double half-range Fourier series of the -function of two variables. We have evaluated an integral involving an exponential function, Sine function, generalized hypergeometric series and -function of two variables. We have introduced an even function on the interval and investigate an integral formula to evaluate the Fourier cosine series involving products of general class of multivariable polynomials (1987) and multivariable -functions due to Gautam (1986). 180 pp. Englisch.
Edité par LAP LAMBERT Academic Publishing, 2016
ISBN 10 : 3659827770 ISBN 13 : 9783659827778
Langue: anglais
Vendeur : moluna, Greven, Allemagne
EUR 58,12
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Singh YashwantYashwant Singh is presently working as an Assistant Professor in the department of Mathematics at Government College, Kaladera, Jaipur. Dr. Yashwant is actively engaged in research and published numerous research papers.
Edité par LAP LAMBERT Academic Publishing, 2016
ISBN 10 : 3659827770 ISBN 13 : 9783659827778
Langue: anglais
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 113,65
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. Print on Demand.
Edité par LAP LAMBERT Academic Publishing, 2016
ISBN 10 : 3659827770 ISBN 13 : 9783659827778
Langue: anglais
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
EUR 114,68
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. PRINT ON DEMAND.
Edité par LAP LAMBERT Academic Publishing, 2016
ISBN 10 : 3659827770 ISBN 13 : 9783659827778
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 71,90
Quantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The authors have established some differential formulae for the -function of two variables . The integrand of the main integral evaluated in this chapter consists of product of the -function of two variables and a class of double Barnes integral. The evaluation of four integrals of -function of two variables proposed by Singh and Mandia (2013) and their applications in deriving double half-range Fourier series for the -function of two variables. A multiple integral and a multiple half-range Fourier series of the -function of two variables are derived analogous to the double integral and double half-range Fourier series of the -function of two variables. We have evaluated an integral involving an exponential function, Sine function, generalized hypergeometric series and -function of two variables. We have introduced an even function on the interval and investigate an integral formula to evaluate the Fourier cosine series involving products of general class of multivariable polynomials (1987) and multivariable -functions due to Gautam (1986).