Edité par Apress (edition 1st ed.), 2022
ISBN 10 : 1484289773 ISBN 13 : 9781484289778
Langue: anglais
Vendeur : BooksRun, Philadelphia, PA, Etats-Unis
Edition originale
Paperback. Etat : Good. 1st ed. It's a preowned item in good condition and includes all the pages. It may have some general signs of wear and tear, such as markings, highlighting, slight damage to the cover, minimal wear to the binding, etc., but they will not affect the overall reading experience.
EUR 23,63
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Rarewaves.com USA, London, LONDO, Royaume-Uni
Edition originale
EUR 25,99
Quantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : New. 1st ed. This book teaches the practical implementation of various concepts for time series analysis and modeling with Python through problem-solution-style recipes, starting with data reading and preprocessing. It begins with the fundamentals of time series forecasting using statistical modeling methods like AR (autoregressive), MA (moving-average), ARMA (autoregressive moving-average), and ARIMA (autoregressive integrated moving-average). Next, you'll learn univariate and multivariate modeling using different open-sourced packages like Fbprohet, stats model, and sklearn. You'll also gain insight into classic machine learning-based regression models like randomForest, Xgboost, and LightGBM for forecasting problems. The book concludes by demonstrating the implementation of deep learning models (LSTMs and ANN) for time series forecasting. Each chapter includes several code examples and illustrations. After finishing this book,you will have a foundational understanding of various concepts relating to time series and its implementation in Python. What You Will LearnImplement various techniques in time series analysis using Python.Utilize statistical modeling methods such as AR (autoregressive), MA (moving-average), ARMA (autoregressive moving-average) and ARIMA (autoregressive integrated moving-average) for time series forecasting Understand univariate and multivariate modeling for time series forecastingForecast using machine learning and deep learning techniques such as GBM and LSTM (long short-term memory) Who This Book Is ForData Scientists, Machine Learning Engineers, and software developers interested in time series analysis.
Vendeur : BargainBookStores, Grand Rapids, MI, Etats-Unis
EUR 26,28
Quantité disponible : 5 disponible(s)
Ajouter au panierPaperback or Softback. Etat : New. Time Series Algorithms Recipes: Implement Machine Learning and Deep Learning Techniques with Python. Book.
Vendeur : Lakeside Books, Benton Harbor, MI, Etats-Unis
EUR 22,81
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. Brand New! Not Overstocks or Low Quality Book Club Editions! Direct From the Publisher! We're not a giant, faceless warehouse organization! We're a small town bookstore that loves books and loves it's customers! Buy from Lakeside Books!
EUR 26,72
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
EUR 22,88
Quantité disponible : 1 disponible(s)
Ajouter au panierPaperback / softback. Etat : New. New copy - Usually dispatched within 2 working days.
Vendeur : Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlande
Edition originale
EUR 35,42
Quantité disponible : 15 disponible(s)
Ajouter au panierEtat : New. 2022. 1st ed. paperback. . . . . .
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 34,56
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Vendeur : Revaluation Books, Exeter, Royaume-Uni
EUR 37,46
Quantité disponible : 2 disponible(s)
Ajouter au panierPaperback. Etat : Brand New. 190 pages. 9.25x6.10x0.43 inches. In Stock.
EUR 32,66
Quantité disponible : 1 disponible(s)
Ajouter au panierEtat : As New. Unread book in perfect condition.
EUR 33,32
Quantité disponible : 1 disponible(s)
Ajouter au panierEtat : New.
Vendeur : Kennys Bookstore, Olney, MD, Etats-Unis
EUR 43,30
Quantité disponible : 15 disponible(s)
Ajouter au panierEtat : New. 2022. 1st ed. paperback. . . . . . Books ship from the US and Ireland.
ISBN 10 : 1484294130 ISBN 13 : 9781484294130
Vendeur : Romtrade Corp., STERLING HEIGHTS, MI, Etats-Unis
EUR 27,42
Quantité disponible : 2 disponible(s)
Ajouter au panierEtat : New. Brand New. Soft Cover International Edition. Different ISBN and Cover Image. Priced lower than the standard editions which is usually intended to make them more affordable for students abroad. The core content of the book is generally the same as the standard edition. The country selling restrictions may be printed on the book but is no problem for the self-use. This Item maybe shipped from US or any other country as we have multiple locations worldwide.
Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 54,47
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New.
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 47,34
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Vendeur : Chiron Media, Wallingford, Royaume-Uni
EUR 43,62
Quantité disponible : 10 disponible(s)
Ajouter au panierPF. Etat : New.
Edité par Springer, Berlin|Apress, 2023
ISBN 10 : 1484289773 ISBN 13 : 9781484289778
Langue: anglais
Vendeur : moluna, Greven, Allemagne
EUR 32,41
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
EUR 22,87
Quantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : New. 1st ed. This book teaches the practical implementation of various concepts for time series analysis and modeling with Python through problem-solution-style recipes, starting with data reading and preprocessing. It begins with the fundamentals of time series forecasting using statistical modeling methods like AR (autoregressive), MA (moving-average), ARMA (autoregressive moving-average), and ARIMA (autoregressive integrated moving-average). Next, you'll learn univariate and multivariate modeling using different open-sourced packages like Fbprohet, stats model, and sklearn. You'll also gain insight into classic machine learning-based regression models like randomForest, Xgboost, and LightGBM for forecasting problems. The book concludes by demonstrating the implementation of deep learning models (LSTMs and ANN) for time series forecasting. Each chapter includes several code examples and illustrations. After finishing this book,you will have a foundational understanding of various concepts relating to time series and its implementation in Python. What You Will LearnImplement various techniques in time series analysis using Python.Utilize statistical modeling methods such as AR (autoregressive), MA (moving-average), ARMA (autoregressive moving-average) and ARIMA (autoregressive integrated moving-average) for time series forecasting Understand univariate and multivariate modeling for time series forecastingForecast using machine learning and deep learning techniques such as GBM and LSTM (long short-term memory) Who This Book Is ForData Scientists, Machine Learning Engineers, and software developers interested in time series analysis.
Edité par Apress, Apress Dez 2022, 2022
ISBN 10 : 1484289773 ISBN 13 : 9781484289778
Langue: anglais
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 37,44
Quantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Neuware -Data Scientists, Machine Learning Engineers, and software developers interested in time series analysis.APress in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 192 pp. Englisch.
Vendeur : preigu, Osnabrück, Allemagne
EUR 33,80
Quantité disponible : 5 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Time Series Algorithms Recipes | Implement Machine Learning and Deep Learning Techniques with Python | Akshay R Kulkarni (u. a.) | Taschenbuch | xvi | Englisch | 2022 | Apress | EAN 9781484289778 | Verantwortliche Person für die EU: APress in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu.
Vendeur : PBShop.store US, Wood Dale, IL, Etats-Unis
EUR 50,26
Quantité disponible : Plus de 20 disponibles
Ajouter au panierPAP. Etat : New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
EUR 33,33
Quantité disponible : Plus de 20 disponibles
Ajouter au panierPaperback / softback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days.
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
EUR 48,03
Quantité disponible : Plus de 20 disponibles
Ajouter au panierPAP. Etat : New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000.
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 37,44
Quantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book teaches the practical implementation of various concepts for time series analysis and modeling with Python through problem-solution-style recipes, starting with data reading and preprocessing.It begins with the fundamentals of time series forecasting using statistical modeling methods like AR (autoregressive), MA (moving-average), ARMA (autoregressive moving-average), and ARIMA (autoregressive integrated moving-average). Next, you'll learn univariate and multivariate modeling using different open-sourced packages like Fbprohet, stats model, and sklearn. You'll also gain insight into classic machine learning-based regression models like randomForest, Xgboost, and LightGBM for forecasting problems. The book concludes by demonstrating the implementation of deep learning models (LSTMs and ANN) for time series forecasting. Each chapter includes several code examples and illustrations.After finishing this book,you will have a foundational understanding of various concepts relating to time series and its implementation in Python.What You Will LearnImplement various techniques in time series analysis using Python.Utilize statistical modeling methods such as AR (autoregressive), MA (moving-average), ARMA (autoregressive moving-average) and ARIMA (autoregressive integrated moving-average) for time series forecastingUnderstand univariate and multivariate modeling for time series forecastingForecast using machine learning and deep learning techniques such as GBM and LSTM (long short-term memory)Who This Book Is ForData Scientists, Machine Learning Engineers, and software developers interested in time series analysis. 192 pp. Englisch.
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 56,01
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. Print on Demand.
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
EUR 57
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. PRINT ON DEMAND.
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 38,62
Quantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This book teaches the practical implementation of various concepts for time series analysis and modeling with Python through problem-solution-style recipes, starting with data reading and preprocessing.It begins with the fundamentals of time series forecasting using statistical modeling methods like AR (autoregressive), MA (moving-average), ARMA (autoregressive moving-average), and ARIMA (autoregressive integrated moving-average). Next, you'll learn univariate and multivariate modeling using different open-sourced packages like Fbprohet, stats model, and sklearn. You'll also gain insight into classic machine learning-based regression models like randomForest, Xgboost, and LightGBM for forecasting problems. The book concludes by demonstrating the implementation of deep learning models (LSTMs and ANN) for time series forecasting. Each chapter includes several code examples and illustrations.After finishing this book,you will have a foundational understanding of various concepts relating to time series and its implementation in Python.What You Will LearnImplement various techniques in time series analysis using Python.Utilize statistical modeling methods such as AR (autoregressive), MA (moving-average), ARMA (autoregressive moving-average) and ARIMA (autoregressive integrated moving-average) for time series forecastingUnderstand univariate and multivariate modeling for time series forecastingForecast using machine learning and deep learning techniques such as GBM and LSTM (long short-term memory)Who This Book Is ForData Scientists, Machine Learning Engineers, and software developers interested in time series analysis.