Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 114,15
Quantité disponible : 1 disponible(s)
Ajouter au panierEtat : New. pp. 270.
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 121
Quantité disponible : 1 disponible(s)
Ajouter au panierEtat : New. pp. 270.
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
EUR 121,78
Quantité disponible : 1 disponible(s)
Ajouter au panierEtat : New. pp. 270.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 161,51
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Edité par Elsevier Science Publishing Co Inc, 2020
ISBN 10 : 0128222263 ISBN 13 : 9780128222263
Langue: anglais
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
EUR 145,88
Quantité disponible : Plus de 20 disponibles
Ajouter au panierPaperback / softback. Etat : New. New copy - Usually dispatched within 4 working days. 480.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 151,44
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 160,07
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 180,12
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Vendeur : preigu, Osnabrück, Allemagne
EUR 122,10
Quantité disponible : 5 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Trends in Deep Learning Methodologies | Algorithms, Applications, and Systems | Vincenzo Piuri (u. a.) | Taschenbuch | Einband - flex.(Paperback) | Englisch | 2020 | Academic Press | EAN 9780128222263 | Verantwortliche Person für die EU: preigu GmbH & Co. KG, Lengericher Landstr. 19, 49078 Osnabrück, mail[at]preigu[dot]de | Anbieter: preigu.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 181,56
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Vendeur : Brook Bookstore On Demand, Napoli, NA, Italie
EUR 118,91
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : new. Questo è un articolo print on demand.
Edité par Elsevier Science & Technology, Academic Press, 2020
ISBN 10 : 0128222263 ISBN 13 : 9780128222263
Langue: anglais
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 132
Quantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Trends in Deep Learning Methodologies: Algorithms, Applications, and Systems covers deep learning approaches such as neural networks, deep belief networks, recurrent neural networks, convolutional neural networks, deep auto-encoder, and deep generative networks, which have emerged as powerful computational models. Chapters elaborate on these models which have shown significant success in dealing with massive data for a large number of applications, given their capacity to extract complex hidden features and learn efficient representation in unsupervised settings. Chapters investigate deep learning-based algorithms in a variety of application, including biomedical and health informatics, computer vision, image processing, and more. In recent years, many powerful algorithms have been developed for matching patterns in data and making predictions about future events. The major advantage of deep learning is to process big data analytics for better analysis and self-adaptive algorithms to handle more data. Deep learning methods can deal with multiple levels of representation in which the system learns to abstract higher level representations of raw data. Earlier, it was a common requirement to have a domain expert to develop a specific model for each specific application, however, recent advancements in representation learning algorithms allow researchers across various subject domains to automatically learn the patterns and representation of the given data for the development of specific models. Englisch.
Vendeur : Revaluation Books, Exeter, Royaume-Uni
EUR 134,04
Quantité disponible : 2 disponible(s)
Ajouter au panierPaperback. Etat : Brand New. 288 pages. 8.75x6.00x0.75 inches. In Stock. This item is printed on demand.
Edité par Elsevier Science & Technology|Academic Press, 2020
ISBN 10 : 0128222263 ISBN 13 : 9780128222263
Langue: anglais
Vendeur : moluna, Greven, Allemagne
EUR 130,54
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Trends in Deep Learning Methodologies: Algorithms, Applications, and Systems covers deep learning approaches such as neural networks, deep belief networks, recurrent neural networks, convolutional neural networks, deep auto-encoder, and deep gener.
Edité par Elsevier Science & Technology, Academic Press, 2020
ISBN 10 : 0128222263 ISBN 13 : 9780128222263
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 146,74
Quantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Trends in Deep Learning Methodologies: Algorithms, Applications, and Systems covers deep learning approaches such as neural networks, deep belief networks, recurrent neural networks, convolutional neural networks, deep auto-encoder, and deep generative networks, which have emerged as powerful computational models. Chapters elaborate on these models which have shown significant success in dealing with massive data for a large number of applications, given their capacity to extract complex hidden features and learn efficient representation in unsupervised settings. Chapters investigate deep learning-based algorithms in a variety of application, including biomedical and health informatics, computer vision, image processing, and more. In recent years, many powerful algorithms have been developed for matching patterns in data and making predictions about future events. The major advantage of deep learning is to process big data analytics for better analysis and self-adaptive algorithms to handle more data. Deep learning methods can deal with multiple levels of representation in which the system learns to abstract higher level representations of raw data. Earlier, it was a common requirement to have a domain expert to develop a specific model for each specific application, however, recent advancements in representation learning algorithms allow researchers across various subject domains to automatically learn the patterns and representation of the given data for the development of specific models.