Vendeur : AwesomeBooks, Wallingford, Royaume-Uni
EUR 10,17
Quantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : Very Good. Neural Networks for Conditional Probability Estimation: Forecasting Beyond Point Predictions (Perspectives in Neural Computing) This book is in very good condition and will be shipped within 24 hours of ordering. The cover may have some limited signs of wear but the pages are clean, intact and the spine remains undamaged. This book has clearly been well maintained and looked after thus far. Money back guarantee if you are not satisfied. See all our books here, order more than 1 book and get discounted shipping. .
Vendeur : Phatpocket Limited, Waltham Abbey, HERTS, Royaume-Uni
EUR 4,49
Quantité disponible : 1 disponible(s)
Ajouter au panierEtat : Good. Your purchase helps support Sri Lankan Children's Charity 'The Rainbow Centre'. Ex-library, so some stamps and wear, but in good overall condition. Our donations to The Rainbow Centre have helped provide an education and a safe haven to hundreds of children who live in appalling conditions.
Vendeur : Bahamut Media, Reading, Royaume-Uni
EUR 10,17
Quantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : Very Good. Shipped within 24 hours from our UK warehouse. Clean, undamaged book with no damage to pages and minimal wear to the cover. Spine still tight, in very good condition. Remember if you are not happy, you are covered by our 100% money back guarantee.
Vendeur : Solr Books, Lincolnwood, IL, Etats-Unis
EUR 17,49
Quantité disponible : 1 disponible(s)
Ajouter au panierEtat : very_good. This books is in Very good condition. There may be a few flaws like shelf wear and some light wear.
Vendeur : California Books, Miami, FL, Etats-Unis
EUR 64,78
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Langue: anglais
Edité par London ; Berlin ; Tokyo ; Heidelberg ; New York ; Barcelona ; Hong Kong ; Milan ; Paris ; Santa Clara ; Singapore : Springer, 1999
ISBN 10 : 1852330953 ISBN 13 : 9781852330958
Vendeur : Roland Antiquariat UG haftungsbeschränkt, Weinheim, Allemagne
EUR 56
Quantité disponible : 1 disponible(s)
Ajouter au panierSoftcover. XXIII, 275 S. : graph. Darst. ; 24 cm Like new. Unread book. --- Neuwertiger Zustand. Ungelesenes Buch. 9781852330958 Sprache: Deutsch Gewicht in Gramm: 467 Softcover reprint of the original 1st ed. 1999.
Vendeur : Chiron Media, Wallingford, Royaume-Uni
EUR 56,31
Quantité disponible : 10 disponible(s)
Ajouter au panierPaperback. Etat : New.
Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 74,04
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. pp. 302.
Vendeur : Revaluation Books, Exeter, Royaume-Uni
EUR 78,23
Quantité disponible : 2 disponible(s)
Ajouter au panierPaperback. Etat : Brand New. 275 pages. 9.50x6.25x0.75 inches. In Stock.
Vendeur : BennettBooksLtd, San Diego, NV, Etats-Unis
EUR 105,96
Quantité disponible : 1 disponible(s)
Ajouter au panierhardcover. Etat : New. In shrink wrap. Looks like an interesting title!
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 59,97
Quantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Conventional applications of neural networks usually predict a single value as a function of given inputs. In forecasting, for example, a standard objective is to predict the future value of some entity of interest on the basis of a time series of past measurements or observations. Typical training schemes aim to minimise the sum of squared deviations between predicted and actual values (the 'targets'), by which, ideally, the network learns the conditional mean of the target given the input. If the underlying conditional distribution is Gaus sian or at least unimodal, this may be a satisfactory approach. However, for a multimodal distribution, the conditional mean does not capture the relevant features of the system, and the prediction performance will, in general, be very poor. This calls for a more powerful and sophisticated model, which can learn the whole conditional probability distribution. Chapter 1 demonstrates that even for a deterministic system and 'be nign' Gaussian observational noise, the conditional distribution of a future observation, conditional on a set of past observations, can become strongly skewed and multimodal. In Chapter 2, a general neural network structure for modelling conditional probability densities is derived, and it is shown that a universal approximator for this extended task requires at least two hidden layers. A training scheme is developed from a maximum likelihood approach in Chapter 3, and the performance ofthis method is demonstrated on three stochastic time series in chapters 4 and 5.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
EUR 156,68
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
EUR 156,93
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : California Books, Miami, FL, Etats-Unis
EUR 192,60
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 206,02
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. pp. 526.
Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 206,80
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. pp. 528.
Langue: anglais
Edité par Springer London, Springer London Feb 2005, 2005
ISBN 10 : 1852337788 ISBN 13 : 9781852337780
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 160,49
Quantité disponible : 2 disponible(s)
Ajouter au panierBuch. Etat : Neu. Neuware -Probabilistic Modelling in Bioinformatics and Medical Informatics has been written for researchers and students in statistics, machine learning, and the biological sciences. The first part of this book provides a self-contained introduction to the methodology of Bayesian networks. The following parts demonstrate how these methods are applied in bioinformatics and medical informatics. All three fields - the methodology of probabilistic modeling, bioinformatics, and medical informatics - are evolving very quickly. The text should therefore be seen as an introduction, offering both elementary tutorials as well as more advanced applications and case studies.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 524 pp. Englisch.
Langue: anglais
Edité par Springer London, Springer London, 2010
ISBN 10 : 1849969124 ISBN 13 : 9781849969123
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 166,62
Quantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Probabilistic Modelling in Bioinformatics and Medical Informatics has been written for researchers and students in statistics, machine learning, and the biological sciences. The first part of this book provides a self-contained introduction to the methodology of Bayesian networks. The following parts demonstrate how these methods are applied in bioinformatics and medical informatics. All three fields - the methodology of probabilistic modeling, bioinformatics, and medical informatics - are evolving very quickly. The text should therefore be seen as an introduction, offering both elementary tutorials as well as more advanced applications and case studies.
Langue: anglais
Edité par Springer London, Springer London, 2005
ISBN 10 : 1852337788 ISBN 13 : 9781852337780
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 168,73
Quantité disponible : 1 disponible(s)
Ajouter au panierBuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - Probabilistic Modelling in Bioinformatics and Medical Informatics has been written for researchers and students in statistics, machine learning, and the biological sciences. The first part of this book provides a self-contained introduction to the methodology of Bayesian networks. The following parts demonstrate how these methods are applied in bioinformatics and medical informatics. All three fields - the methodology of probabilistic modeling, bioinformatics, and medical informatics - are evolving very quickly. The text should therefore be seen as an introduction, offering both elementary tutorials as well as more advanced applications and case studies.
Langue: anglais
Edité par Springer, Springer Feb 1999, 1999
ISBN 10 : 1852330953 ISBN 13 : 9781852330958
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 53,49
Quantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Conventional applications of neural networks usually predict a single value as a function of given inputs. In forecasting, for example, a standard objective is to predict the future value of some entity of interest on the basis of a time series of past measurements or observations. Typical training schemes aim to minimise the sum of squared deviations between predicted and actual values (the 'targets'), by which, ideally, the network learns the conditional mean of the target given the input. If the underlying conditional distribution is Gaus sian or at least unimodal, this may be a satisfactory approach. However, for a multimodal distribution, the conditional mean does not capture the relevant features of the system, and the prediction performance will, in general, be very poor. This calls for a more powerful and sophisticated model, which can learn the whole conditional probability distribution. Chapter 1 demonstrates that even for a deterministic system and 'be nign' Gaussian observational noise, the conditional distribution of a future observation, conditional on a set of past observations, can become strongly skewed and multimodal. In Chapter 2, a general neural network structure for modelling conditional probability densities is derived, and it is shown that a universal approximator for this extended task requires at least two hidden layers. A training scheme is developed from a maximum likelihood approach in Chapter 3, and the performance ofthis method is demonstrated on three stochastic time series in chapters 4 and 5. 300 pp. Englisch.
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 76,62
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. Print on Demand pp. 302 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam.
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
EUR 67,62
Quantité disponible : Plus de 20 disponibles
Ajouter au panierPaperback / softback. Etat : New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days.
Vendeur : Biblios, Frankfurt am main, HESSE, Allemagne
EUR 78,77
Quantité disponible : 4 disponible(s)
Ajouter au panierEtat : New. PRINT ON DEMAND pp. 302.
Vendeur : moluna, Greven, Allemagne
EUR 48,37
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Provides unique, comprehensive coverage of generalisation and regularisation: Provides the first real-world test results for recent theoretical findings on the generalisation performance of committeesConventional applications of neural networks usually .
Langue: anglais
Edité par Springer London, Springer London Feb 1999, 1999
ISBN 10 : 1852330953 ISBN 13 : 9781852330958
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 53,49
Quantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - Print on Demand Titel. Neuware -Conventional applications of neural networks usually predict a single value as a function of given inputs. In forecasting, for example, a standard objective is to predict the future value of some entity of interest on the basis of a time series of past measurements or observations. Typical training schemes aim to minimise the sum of squared deviations between predicted and actual values (the 'targets'), by which, ideally, the network learns the conditional mean of the target given the input. If the underlying conditional distribution is Gaus sian or at least unimodal, this may be a satisfactory approach. However, for a multimodal distribution, the conditional mean does not capture the relevant features of the system, and the prediction performance will, in general, be very poor. This calls for a more powerful and sophisticated model, which can learn the whole conditional probability distribution. Chapter 1 demonstrates that even for a deterministic system and 'be nign' Gaussian observational noise, the conditional distribution of a future observation, conditional on a set of past observations, can become strongly skewed and multimodal. In Chapter 2, a general neural network structure for modelling conditional probability densities is derived, and it is shown that a universal approximator for this extended task requires at least two hidden layers. A training scheme is developed from a maximum likelihood approach in Chapter 3, and the performance ofthis method is demonstrated on three stochastic time series in chapters 4 and 5.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 300 pp. Englisch.
Vendeur : preigu, Osnabrück, Allemagne
EUR 50,35
Quantité disponible : 5 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Neural Networks for Conditional Probability Estimation | Forecasting Beyond Point Predictions | Dirk Husmeier | Taschenbuch | xxiii | Englisch | 1999 | Springer | EAN 9781852330958 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand.
Langue: anglais
Edité par Springer London Okt 2010, 2010
ISBN 10 : 1849969124 ISBN 13 : 9781849969123
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 160,49
Quantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Probabilistic Modelling in Bioinformatics and Medical Informatics has been written for researchers and students in statistics, machine learning, and the biological sciences. The first part of this book provides a self-contained introduction to the methodology of Bayesian networks. The following parts demonstrate how these methods are applied in bioinformatics and medical informatics. All three fields - the methodology of probabilistic modeling, bioinformatics, and medical informatics - are evolving very quickly. The text should therefore be seen as an introduction, offering both elementary tutorials as well as more advanced applications and case studies. 524 pp. Englisch.
Langue: anglais
Edité par Springer London Feb 2005, 2005
ISBN 10 : 1852337788 ISBN 13 : 9781852337780
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 160,49
Quantité disponible : 2 disponible(s)
Ajouter au panierBuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Probabilistic Modelling in Bioinformatics and Medical Informatics has been written for researchers and students in statistics, machine learning, and the biological sciences. The first part of this book provides a self-contained introduction to the methodology of Bayesian networks. The following parts demonstrate how these methods are applied in bioinformatics and medical informatics. All three fields - the methodology of probabilistic modeling, bioinformatics, and medical informatics - are evolving very quickly. The text should therefore be seen as an introduction, offering both elementary tutorials as well as more advanced applications and case studies. 524 pp. Englisch.
Vendeur : moluna, Greven, Allemagne
EUR 136,16
Quantité disponible : Plus de 20 disponibles
Ajouter au panierGebunden. Etat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. There is currently no other book that provides a contemporary survey of probabilistic models in both bio-medicine and bio-informaticsAn internet site will accompany the bookProbabilistic Modelling in Bioinformatics and Medical Info.
Vendeur : moluna, Greven, Allemagne
EUR 136,16
Quantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. There is currently no other book that provides a contemporary survey of probabilistic models in both bio-medicine and bio-informaticsAn internet site will accompany the bookProbabilistic Modelling in Bioinformatics and Medical Info.