Vendeur : GuthrieBooks, Spring Branch, TX, Etats-Unis
EUR 44,63
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : Very Good. Ex-library paperback in very nice condition with the usual markings and attachments. Text block clean and unmarked. Tight binding.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 53,58
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : Best Price, Torrance, CA, Etats-Unis
EUR 48,04
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : New. SUPER FAST SHIPPING.
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
EUR 52,42
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 60,96
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 58,18
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. In.
Vendeur : Chiron Media, Wallingford, Royaume-Uni
EUR 56,73
Autre deviseQuantité disponible : 10 disponible(s)
Ajouter au panierPaperback. Etat : New.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 58,17
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New.
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 65,95
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : As New. Unread book in perfect condition.
Edité par Springer Berlin Heidelberg, Springer Berlin Heidelberg Jul 2002, 2002
ISBN 10 : 354044016X ISBN 13 : 9783540440161
Langue: anglais
Vendeur : buchversandmimpf2000, Emtmannsberg, BAYE, Allemagne
EUR 53,49
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Neuware -With their introduction in 1995, Support Vector Machines (SVMs) marked the beginningofanewerainthelearningfromexamplesparadigm.Rootedinthe Statistical Learning Theory developed by Vladimir Vapnik at AT&T, SVMs quickly gained attention from the pattern recognition community due to a n- beroftheoreticalandcomputationalmerits.Theseinclude,forexample,th e simple geometrical interpretation of the margin, uniqueness of the solution, s- tistical robustness of the loss function, modularity of the kernel function, and over t control through the choice of a single regularization parameter. Like all really good and far reaching ideas, SVMs raised a number of - terestingproblemsforboththeoreticiansandpractitioners.Newapproachesto Statistical Learning Theory are under development and new and more e cient methods for computing SVM with a large number of examples are being studied. Being interested in the development of trainable systems ourselves, we decided to organize an international workshop as a satellite event of the 16th Inter- tional Conference on Pattern Recognition emphasizing the practical impact and relevance of SVMs for pattern recognition. By March 2002, a total of 57 full papers had been submitted from 21 co- tries.Toensurethehighqualityofworkshopandproceedings,theprogramc- mitteeselectedandaccepted30ofthemafterathoroughreviewprocess.Ofthese papers16werepresentedin4oralsessionsand14inapostersession.Thepapers span a variety of topics in pattern recognition with SVMs from computational theoriestotheirimplementations.Inadditiontotheseexcellentpresentations, there were two invited papers by Sayan Mukherjee, MIT and Yoshua Bengio, University of Montreal.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 438 pp. Englisch.
Edité par Springer Berlin Heidelberg, 2002
ISBN 10 : 354044016X ISBN 13 : 9783540440161
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 53,49
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Druck auf Anfrage Neuware - Printed after ordering - With their introduction in 1995, Support Vector Machines (SVMs) marked the beginningofanewerainthelearningfromexamplesparadigm.Rootedinthe Statistical Learning Theory developed by Vladimir Vapnik at AT&T, SVMs quickly gained attention from the pattern recognition community due to a n- beroftheoreticalandcomputationalmerits.Theseinclude,forexample,the simple geometrical interpretation of the margin, uniqueness of the solution, s- tistical robustness of the loss function, modularity of the kernel function, and over t control through the choice of a single regularization parameter. Like all really good and far reaching ideas, SVMs raised a number of - terestingproblemsforboththeoreticiansandpractitioners.Newapproachesto Statistical Learning Theory are under development and new and more e cient methods for computing SVM with a large number of examples are being studied. Being interested in the development of trainable systems ourselves, we decided to organize an international workshop as a satellite event of the 16th Inter- tional Conference on Pattern Recognition emphasizing the practical impact and relevance of SVMs for pattern recognition. By March 2002, a total of 57 full papers had been submitted from 21 co- tries.Toensurethehighqualityofworkshopandproceedings,theprogramc- mitteeselectedandaccepted30ofthemafterathoroughreviewprocess.Ofthese papers16werepresentedin4oralsessionsand14inapostersession.Thepapers span a variety of topics in pattern recognition with SVMs from computational theoriestotheirimplementations.Inadditiontotheseexcellentpresentations, there were two invited papers by Sayan Mukherjee, MIT and Yoshua Bengio, University of Montreal.
Edité par Springer Berlin Heidelberg Jul 2002, 2002
ISBN 10 : 354044016X ISBN 13 : 9783540440161
Langue: anglais
Vendeur : BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Allemagne
EUR 53,49
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -With their introduction in 1995, Support Vector Machines (SVMs) marked the beginningofanewerainthelearningfromexamplesparadigm.Rootedinthe Statistical Learning Theory developed by Vladimir Vapnik at AT&T, SVMs quickly gained attention from the pattern recognition community due to a n- beroftheoreticalandcomputationalmerits.Theseinclude,forexample,th e simple geometrical interpretation of the margin, uniqueness of the solution, s- tistical robustness of the loss function, modularity of the kernel function, and over t control through the choice of a single regularization parameter. Like all really good and far reaching ideas, SVMs raised a number of - terestingproblemsforboththeoreticiansandpractitioners.Newapproachesto Statistical Learning Theory are under development and new and more e cient methods for computing SVM with a large number of examples are being studied. Being interested in the development of trainable systems ourselves, we decided to organize an international workshop as a satellite event of the 16th Inter- tional Conference on Pattern Recognition emphasizing the practical impact and relevance of SVMs for pattern recognition. By March 2002, a total of 57 full papers had been submitted from 21 co- tries.Toensurethehighqualityofworkshopandproceedings,theprogramc- mitteeselectedandaccepted30ofthemafterathoroughreviewprocess.Ofthese papers16werepresentedin4oralsessionsand14inapostersession.Thepapers span a variety of topics in pattern recognition with SVMs from computational theoriestotheirimplementations.Inadditiontotheseexcellentpresentations, there were two invited papers by Sayan Mukherjee, MIT and Yoshua Bengio, University of Montreal. 438 pp. Englisch.
Edité par Springer Berlin Heidelberg, 2002
ISBN 10 : 354044016X ISBN 13 : 9783540440161
Langue: anglais
Vendeur : moluna, Greven, Allemagne
EUR 48,37
Autre deviseQuantité disponible : Plus de 20 disponibles
Ajouter au panierEtat : New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Invited Papers.- Predicting Signal Peptides with Support Vector Machines.- Scaling Large Learning Problems with Hard Parallel Mixtures.- Computational Issues.- On the Generalization of Kernel Machines.- Kernel Whitening for One-Class Classification.- A Fast.