Edité par Princeton University Press, 2019
ISBN 10 : 0691182140 ISBN 13 : 9780691182148
Langue: anglais
Vendeur : Labyrinth Books, Princeton, NJ, Etats-Unis
EUR 43,18
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : New.
Edité par Princeton University Press, 2019
ISBN 10 : 0691182140 ISBN 13 : 9780691182148
Langue: anglais
Vendeur : PlumCircle, West Mifflin, PA, Etats-Unis
EUR 20,27
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierpaperback. Etat : Fine. Publisher overstock. May have remainder mark / minimal shelfwear. 99% of orders arrive in 4-10 days. Discounted shipping on multiple books.
Edité par Princeton University Press, 2019
ISBN 10 : 0691182140 ISBN 13 : 9780691182148
Langue: anglais
Vendeur : PBShop.store UK, Fairford, GLOS, Royaume-Uni
EUR 81,62
Autre deviseQuantité disponible : 9 disponible(s)
Ajouter au panierPAP. Etat : New. New Book. Shipped from UK. Established seller since 2000.
Edité par Princeton University Press, 2019
ISBN 10 : 0691182140 ISBN 13 : 9780691182148
Langue: anglais
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 71,23
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : New.
Edité par Princeton University Press, 2019
ISBN 10 : 0691182132 ISBN 13 : 9780691182131
Langue: anglais
Vendeur : Labyrinth Books, Princeton, NJ, Etats-Unis
EUR 72,26
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : New.
Edité par Princeton University Press, 2019
ISBN 10 : 0691182140 ISBN 13 : 9780691182148
Langue: anglais
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 86,19
Autre deviseQuantité disponible : 9 disponible(s)
Ajouter au panierEtat : New. In.
Edité par Princeton University Press, 2019
ISBN 10 : 0691182140 ISBN 13 : 9780691182148
Langue: anglais
Vendeur : THE SAINT BOOKSTORE, Southport, Royaume-Uni
EUR 85,17
Autre deviseQuantité disponible : 9 disponible(s)
Ajouter au panierPaperback / softback. Etat : New. New copy - Usually dispatched within 4 working days. 526.
Edité par Princeton University Press, US, 2019
ISBN 10 : 0691182140 ISBN 13 : 9780691182148
Langue: anglais
Vendeur : Rarewaves.com UK, London, Royaume-Uni
EUR 90,88
Autre deviseQuantité disponible : 5 disponible(s)
Ajouter au panierPaperback. Etat : New. A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: Weil's conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case where K is the function field of an algebraic curve X, this conjecture counts the number of G-bundles on X (global information) in terms of the reduction of G at the points of X (local information). The goal of this book is to give a conceptual proof of Weil's conjecture, based on the geometry of the moduli stack of G-bundles. Inspired by ideas from algebraic topology, it introduces a theory of factorization homology in the setting ?-adic sheaves. Using this theory, Dennis Gaitsgory and Jacob Lurie articulate a different local-to-global principle: a product formula that expresses the cohomology of the moduli stack of G-bundles (a global object) as a tensor product of local factors.Using a version of the Grothendieck-Lefschetz trace formula, Gaitsgory and Lurie show that this product formula implies Weil's conjecture. The proof of the product formula will appear in a sequel volume.
Edité par Princeton University Press, 2019
ISBN 10 : 0691182140 ISBN 13 : 9780691182148
Langue: anglais
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 76,49
Autre deviseQuantité disponible : 10 disponible(s)
Ajouter au panierEtat : New.
Edité par Princeton University Press, 2019
ISBN 10 : 0691182140 ISBN 13 : 9780691182148
Langue: anglais
Vendeur : PlumCircle, West Mifflin, PA, Etats-Unis
EUR 29,88
Autre deviseQuantité disponible : 6 disponible(s)
Ajouter au panierpaperback. Etat : New. New item in gift quality condition. 99% of orders arrive in 4-10 days. Discounted shipping on multiple books.
Edité par Princeton University Press, 2019
ISBN 10 : 0691182140 ISBN 13 : 9780691182148
Langue: anglais
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 79,74
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : As New. Unread book in perfect condition.
Edité par Princeton University Press, 2019
ISBN 10 : 0691182140 ISBN 13 : 9780691182148
Langue: anglais
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 81,61
Autre deviseQuantité disponible : 10 disponible(s)
Ajouter au panierEtat : As New. Unread book in perfect condition.
Edité par Princeton University Press, US, 2019
ISBN 10 : 0691182140 ISBN 13 : 9780691182148
Langue: anglais
Vendeur : Rarewaves.com USA, London, LONDO, Royaume-Uni
EUR 97,66
Autre deviseQuantité disponible : 5 disponible(s)
Ajouter au panierPaperback. Etat : New. A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: Weil's conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case where K is the function field of an algebraic curve X, this conjecture counts the number of G-bundles on X (global information) in terms of the reduction of G at the points of X (local information). The goal of this book is to give a conceptual proof of Weil's conjecture, based on the geometry of the moduli stack of G-bundles. Inspired by ideas from algebraic topology, it introduces a theory of factorization homology in the setting ?-adic sheaves. Using this theory, Dennis Gaitsgory and Jacob Lurie articulate a different local-to-global principle: a product formula that expresses the cohomology of the moduli stack of G-bundles (a global object) as a tensor product of local factors.Using a version of the Grothendieck-Lefschetz trace formula, Gaitsgory and Lurie show that this product formula implies Weil's conjecture. The proof of the product formula will appear in a sequel volume.
Edité par Princeton University Press, 2019
ISBN 10 : 0691182140 ISBN 13 : 9780691182148
Langue: anglais
Vendeur : Majestic Books, Hounslow, Royaume-Uni
EUR 94,12
Autre deviseQuantité disponible : 3 disponible(s)
Ajouter au panierEtat : New. pp. 320.
Edité par Princeton University Press, US, 2019
ISBN 10 : 0691182140 ISBN 13 : 9780691182148
Langue: anglais
Vendeur : Rarewaves USA, OSWEGO, IL, Etats-Unis
EUR 103,43
Autre deviseQuantité disponible : 14 disponible(s)
Ajouter au panierPaperback. Etat : New. A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: Weil's conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case where K is the function field of an algebraic curve X, this conjecture counts the number of G-bundles on X (global information) in terms of the reduction of G at the points of X (local information). The goal of this book is to give a conceptual proof of Weil's conjecture, based on the geometry of the moduli stack of G-bundles. Inspired by ideas from algebraic topology, it introduces a theory of factorization homology in the setting ?-adic sheaves. Using this theory, Dennis Gaitsgory and Jacob Lurie articulate a different local-to-global principle: a product formula that expresses the cohomology of the moduli stack of G-bundles (a global object) as a tensor product of local factors.Using a version of the Grothendieck-Lefschetz trace formula, Gaitsgory and Lurie show that this product formula implies Weil's conjecture. The proof of the product formula will appear in a sequel volume.
Edité par Princeton University Press Feb 2019, 2019
ISBN 10 : 0691182140 ISBN 13 : 9780691182148
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 93,94
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierTaschenbuch. Etat : Neu. Neuware - A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: Weil's conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case where K is the function field of an algebraic curve X, this conjecture counts the number of G-bundles on X (global information) in terms of the reduction of G at the points of X (local information). The goal of this book is to give a conceptual proof of Weil's conjecture, based on the geometry of the moduli stack of G-bundles. Inspired by ideas from algebraic topology, it introduces a theory of factorization homology in the setting ¿-adic sheaves. Using this theory, Dennis Gaitsgory and Jacob Lurie articulate a different local-to-global principle: a product formula that expresses the cohomology of the moduli stack of G-bundles (a global object) as a tensor product of local factors.Using a version of the Grothendieck-Lefschetz trace formula, Gaitsgory and Lurie show that this product formula implies Weil's conjecture. The proof of the product formula will appear in a sequel volume.
Edité par Princeton University Press, US, 2019
ISBN 10 : 0691182140 ISBN 13 : 9780691182148
Langue: anglais
Vendeur : Rarewaves USA United, OSWEGO, IL, Etats-Unis
EUR 105,59
Autre deviseQuantité disponible : 14 disponible(s)
Ajouter au panierPaperback. Etat : New. A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: Weil's conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case where K is the function field of an algebraic curve X, this conjecture counts the number of G-bundles on X (global information) in terms of the reduction of G at the points of X (local information). The goal of this book is to give a conceptual proof of Weil's conjecture, based on the geometry of the moduli stack of G-bundles. Inspired by ideas from algebraic topology, it introduces a theory of factorization homology in the setting ?-adic sheaves. Using this theory, Dennis Gaitsgory and Jacob Lurie articulate a different local-to-global principle: a product formula that expresses the cohomology of the moduli stack of G-bundles (a global object) as a tensor product of local factors.Using a version of the Grothendieck-Lefschetz trace formula, Gaitsgory and Lurie show that this product formula implies Weil's conjecture. The proof of the product formula will appear in a sequel volume.
Edité par Princeton University Press, 2019
ISBN 10 : 0691182140 ISBN 13 : 9780691182148
Langue: anglais
Vendeur : Books Puddle, New York, NY, Etats-Unis
EUR 104,28
Autre deviseQuantité disponible : 3 disponible(s)
Ajouter au panierEtat : New. pp. 320.
Edité par Princeton University Press, 2019
ISBN 10 : 0691182140 ISBN 13 : 9780691182148
Langue: anglais
Vendeur : Lucky's Textbooks, Dallas, TX, Etats-Unis
EUR 91,86
Autre deviseQuantité disponible : 6 disponible(s)
Ajouter au panierEtat : New.
Edité par Princeton University Press, 2019
ISBN 10 : 0691182132 ISBN 13 : 9780691182131
Langue: anglais
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 146,44
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : New.
Edité par Princeton University Press, 2019
ISBN 10 : 0691182132 ISBN 13 : 9780691182131
Langue: anglais
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 149,23
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierEtat : New.
Edité par Princeton University Press, New Jersey, 2019
ISBN 10 : 0691182140 ISBN 13 : 9780691182148
Langue: anglais
Vendeur : Grand Eagle Retail, Mason, OH, Etats-Unis
EUR 111,22
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierPaperback. Etat : new. Paperback. A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: Weil's conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case where K is the function field of an algebraic curve X, this conjecture counts the number of G-bundles on X (global information) in terms of the reduction of G at the points of X (local information). The goal of this book is to give a conceptual proof of Weil's conjecture, based on the geometry of the moduli stack of G-bundles. Inspired by ideas from algebraic topology, it introduces a theory of factorization homology in the setting -adic sheaves. Using this theory, Dennis Gaitsgory and Jacob Lurie articulate a different local-to-global principle: a product formula that expresses the cohomology of the moduli stack of G-bundles (a global object) as a tensor product of local factors.Using a version of the Grothendieck-Lefschetz trace formula, Gaitsgory and Lurie show that this product formula implies Weil's conjecture. The proof of the product formula will appear in a sequel volume. A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: Weil's conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case wher Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Edité par Princeton University Press, 2019
ISBN 10 : 0691182132 ISBN 13 : 9780691182131
Langue: anglais
Vendeur : Ria Christie Collections, Uxbridge, Royaume-Uni
EUR 183,07
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : New. In.
Edité par Princeton University Press, 2019
ISBN 10 : 0691182132 ISBN 13 : 9780691182131
Langue: anglais
Vendeur : GreatBookPrices, Columbia, MD, Etats-Unis
EUR 172,45
Autre deviseQuantité disponible : 2 disponible(s)
Ajouter au panierEtat : As New. Unread book in perfect condition.
Edité par Princeton University Press, 2019
ISBN 10 : 0691182132 ISBN 13 : 9780691182131
Langue: anglais
Vendeur : GreatBookPricesUK, Woodford Green, Royaume-Uni
EUR 173,14
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierEtat : As New. Unread book in perfect condition.
Edité par Princeton University Press Feb 2019, 2019
ISBN 10 : 0691182132 ISBN 13 : 9780691182131
Langue: anglais
Vendeur : AHA-BUCH GmbH, Einbeck, Allemagne
EUR 189,40
Autre deviseQuantité disponible : 1 disponible(s)
Ajouter au panierBuch. Etat : Neu. Neuware - A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: Weil's conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case where K is the function field of an algebraic curve X, this conjecture counts the number of G-bundles on X (global information) in terms of the reduction of G at the points of X (local information). The goal of this book is to give a conceptual proof of Weil's conjecture, based on the geometry of the moduli stack of G-bundles. Inspired by ideas from algebraic topology, it introduces a theory of factorization homology in the setting ¿-adic sheaves. Using this theory, Dennis Gaitsgory and Jacob Lurie articulate a different local-to-global principle: a product formula that expresses the cohomology of the moduli stack of G-bundles (a global object) as a tensor product of local factors.Using a version of the Grothendieck-Lefschetz trace formula, Gaitsgory and Lurie show that this product formula implies Weil's conjecture. The proof of the product formula will appear in a sequel volume.
Edité par Princeton University Press, US, 2019
ISBN 10 : 0691182132 ISBN 13 : 9780691182131
Langue: anglais
Vendeur : Rarewaves USA, OSWEGO, IL, Etats-Unis
EUR 220,92
Autre deviseQuantité disponible : 3 disponible(s)
Ajouter au panierHardback. Etat : New. A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: Weil's conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case where K is the function field of an algebraic curve X, this conjecture counts the number of G-bundles on X (global information) in terms of the reduction of G at the points of X (local information). The goal of this book is to give a conceptual proof of Weil's conjecture, based on the geometry of the moduli stack of G-bundles. Inspired by ideas from algebraic topology, it introduces a theory of factorization homology in the setting ?-adic sheaves. Using this theory, Dennis Gaitsgory and Jacob Lurie articulate a different local-to-global principle: a product formula that expresses the cohomology of the moduli stack of G-bundles (a global object) as a tensor product of local factors.Using a version of the Grothendieck-Lefschetz trace formula, Gaitsgory and Lurie show that this product formula implies Weil's conjecture. The proof of the product formula will appear in a sequel volume.
Edité par Princeton University Press, US, 2019
ISBN 10 : 0691182132 ISBN 13 : 9780691182131
Langue: anglais
Vendeur : Rarewaves USA United, OSWEGO, IL, Etats-Unis
EUR 223,89
Autre deviseQuantité disponible : 3 disponible(s)
Ajouter au panierHardback. Etat : New. A central concern of number theory is the study of local-to-global principles, which describe the behavior of a global field K in terms of the behavior of various completions of K. This book looks at a specific example of a local-to-global principle: Weil's conjecture on the Tamagawa number of a semisimple algebraic group G over K. In the case where K is the function field of an algebraic curve X, this conjecture counts the number of G-bundles on X (global information) in terms of the reduction of G at the points of X (local information). The goal of this book is to give a conceptual proof of Weil's conjecture, based on the geometry of the moduli stack of G-bundles. Inspired by ideas from algebraic topology, it introduces a theory of factorization homology in the setting ?-adic sheaves. Using this theory, Dennis Gaitsgory and Jacob Lurie articulate a different local-to-global principle: a product formula that expresses the cohomology of the moduli stack of G-bundles (a global object) as a tensor product of local factors.Using a version of the Grothendieck-Lefschetz trace formula, Gaitsgory and Lurie show that this product formula implies Weil's conjecture. The proof of the product formula will appear in a sequel volume.